← 返回
储能系统技术 储能系统 强化学习 ★ 5.0

评估结合中间储能的电转X系统中基于网格惩罚的强化学习在可再生能源管理中的应用

Assessing Grid Penalized Reinforcement Learning for Renewable Energy Management of Power-to-X Integrated With Intermediate Storage

作者 Jeongdong Kim · Jonggeol Na · Joseph Sang-Il Kwon · Seongbin Ga · Sungho Suh · Junghwan Kim
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年6月
技术分类 储能系统技术
技术标签 储能系统 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电力制X系统 深度强化学习 规划策略 运行成本 可再生能源渗透率
语言:

中文摘要

本研究通过详细案例与对比分析,探讨了在可再生能源与电价不确定性下,基于深度强化学习(DRL)的电转X(PtX)系统规划策略。提出一种融合混合储能系统的DRL小时级规划模型,采用网格惩罚奖励函数以抑制电网电力过度使用,并考虑可再生能源出力与电价的时间不确定性。利用法国国家实际数据,将该模型与规则基线模型在不同时空不确定性下进行比较。结果表明,DRL模型在全国范围内实现月利润提升1360.12%,尽管可再生能源渗透率略低,但通过提高电网惩罚强度可有效缩小渗透率差距并维持高盈利性。该研究首次量化揭示了DRL驱动PtX系统的规划机制,凸显其在控制电网依赖与优化系统经济性方面的优势。

English Abstract

This research explores the deep reinforcement learning (DRL) based planning strategies of power-to-X (PtX) systems under uncertainties of renewable and price through a detailed case study and comparative analysis of system planning. A DRL-based hourly planning model is proposed to minimize operational costs for a PtX system, incorporating a hybrid energy storage system. The model employs a grid-penalized reward function to manage grid power usage while accounting for temporal uncertainties in renewable and grid prices. To analyze the DRL model's planning strategies, it is compared to a general rule-based model across varying spatial and temporal uncertainties using real-world data from national (France) areas. The results show that the DRL-based planning approach consistently outperforms the rule-based model, achieving 1,360.12% higher monthly profits in the national area, though with a relatively lower renewable energy penetration (REP). However, sensitivity analysis reveals that increasing the grid penalty level effectively reduces the gap in REP while sustaining higher profitability. This comparative analysis is the first to quantitatively reveal the planning strategies of a DRL-based PtX system, highlighting its effectiveness in reducing grid power overuse while maintaining higher profitability in system planning.
S

SunView 深度解读

该DRL驱动的可再生能源管理技术对阳光电源PowerTitan储能系统和ST系列储能变流器具有重要应用价值。研究提出的网格惩罚强化学习策略可直接应用于储能系统的能量管理系统(EMS),通过动态优化充放电策略,在电价波动和新能源出力不确定性下实现经济性最优。混合储能系统的小时级规划模型可集成至iSolarCloud云平台,提升光储一体化项目的智能调度能力。特别是电网依赖控制机制,可优化阳光电源在工商业储能和电网侧储能项目中的削峰填谷策略,降低电网冲击的同时提升系统收益。该技术为阳光电源开发基于AI的下一代EMS算法提供了理论支撑和实践路径。