← 返回
光伏发电技术 SiC器件 多物理场耦合 深度学习 ★ 4.0

SolarFusionNet:通过自动多模态特征选择与跨模态融合增强太阳辐照度预测

SolarFusionNet: Enhanced Solar Irradiance Forecasting via Automated Multi-Modal Feature Selection and Cross-Modal Fusion

作者 Tao Jing · Shanlin Chen · David Navarro-Alarcon · Yinghao Chu · Mengying Li
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年10月
技术分类 光伏发电技术
技术标签 SiC器件 多物理场耦合 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 太阳能辐照度预测 SolarFusionNet 多模态特征选择 数据融合 区域太阳能辐照度
语言:

中文摘要

太阳能预测是缓解间歇性光伏发电对电网负面影响的有效技术。尽管已有多种深度学习方法用于太阳辐照度预测,但在超短期区域预测中,多模态特征的自动选择与综合融合研究仍显不足。本文提出SolarFusionNet,一种融合自动多模态特征选择与跨模态数据融合的新型深度学习模型。该模型设计了两类自动特征选择单元,分别提取多通道卫星图像与多变量气象数据的关键特征,并采用三种循环层捕捉长期依赖关系。特别地,引入高斯核卷积长短期记忆网络以提取光流云运动场中的稀疏特征。进一步提出基于物理逻辑依赖的分层多头跨模态自注意力机制,挖掘模态间耦合关系。实验表明,SolarFusionNet在区域辐照度预测中表现优异,4小时预测技能达37.4%–47.6%,优于现有先进模型。

English Abstract

Solar forecasting has emerged as a cost-effective technology to mitigate the negative impacts of intermittent solar power on the power grid. Despite the multitude of deep learning methodologies available for forecasting solar irradiance, there is a notable gap in research concerning the automated selection and holistic utilization of multi-modal features for ultra-short-term regional irradiance forecasting. Our study introduces SolarFusionNet, a novel deep learning architecture that effectively integrates automatic multi-modal feature selection and cross-modal data fusion. SolarFusionNet utilizes two distinct types of automatic variable feature selection units to extract relevant features from multichannel satellite images and multivariate meteorological data, respectively. Long-term dependencies are then captured using three types of recurrent layers, each tailored to the corresponding data modal. In particular, a novel Gaussian kernel-injected convolutional long short-term memory network is specifically designed to isolate the sparse features present in the cloud motion field derived from optical flow. Subsequently, a hierarchical multi-head cross-modal self-attention mechanism is proposed based on the physical-logical dependencies among the three modalities to investigate the coupling correlations among the modalities. The experimental results indicate that SolarFusionNet exhibits robust performance in predicting regional solar irradiance, achieving higher accuracy than other state-of-the-art models and a forecast skill ranging from 37.4% to 47.6% against the smart persistence model for the 4-hour-ahead forecast.
S

SunView 深度解读

该多模态太阳辐照度预测技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。SolarFusionNet融合卫星图像与气象数据的4小时超短期预测能力(技能达37.4%-47.6%),可直接应用于SG系列光伏逆变器的MPPT算法优化,提前调整功率跟踪策略;对PowerTitan储能系统的能量管理系统(EMS)尤为关键,精准预测可优化充放电调度策略,提升储能系统经济性;对ST储能变流器的GFM/GFL控制策略切换提供决策依据。该模型的跨模态融合机制与物理逻辑依赖设计,可启发阳光电源开发融合多源数据的智能诊断算法,增强预测性维护能力,降低电站运维成本,提升新能源并网友好性。