← 返回
储能系统技术 储能系统 GaN器件 可靠性分析 ★ 4.0

面向在线局部放电监测的特征对齐与类别感知增量学习

Feature-Aligned and Class-Aware Incremental Learning for Online Partial Discharge Monitoring

作者 Jinsheng Ji · Zhou Shu · Minshan Lu · Hongqun Li · Yuanjin Zheng · Xudong Jiang
期刊 IEEE Transactions on Power Delivery
出版日期 2025年7月
技术分类 储能系统技术
技术标签 储能系统 GaN器件 可靠性分析
相关度评分 ★★★★ 4.0 / 5.0
关键词 局部放电监测 增量学习框架 知识蒸馏 边缘云协作架构 性能评估
语言:

中文摘要

针对高压开关设备在线局部放电(PD)监测的需求,本文提出一种特征对齐、类别感知的增量学习框架,适用于多变电站分布式的开关柜在线监测。该系统通过边缘-云协同架构,周期性聚合分布式数据流以实现模型更新与知识优化。为应对动态数据下的高效模型更新、边缘端决策实时性及带宽约束,引入基于空间对齐的知识蒸馏方法,将云端模型知识迁移至轻量级边缘模型。实验结果表明,所提方法在局部放电数据集上显著优于现有方法,具备高精度与强适应性。

English Abstract

The development of a reliable and accurate online condition monitoring system for detecting partial discharges (PD) in electrical switchgears is critical for ensuring the reliability and safety of high-voltage equipment. As the demand for scalable and centralized monitoring grows, existing methods face new challenges in adaptability and performance. In this study, we propose a feature-aligned, class-aware incremental learning framework designed specifically for online PD monitoring in switchgear units distributed across multiple substations. The system aggregates data streams from these distributed sites periodically to facilitate centralized model updates and knowledge refinement. To address the challenges of efficient model updates in the face of increasingly dynamic datasets, as well as the need for rapid decision-making and bandwidth efficiency at the edge, we propose a spatial alignment-based knowledge distillation approach that transfers knowledge from the cloud model to lightweight models deployed on edge-computing devices. This edge–cloud collaborative architecture ensures fast, accurate, and context-aware PD detection at the front side. We organize the captured PD data from substations to assess the efficacy of the proposed method. Experimental results on the PD datasets demonstrate the superior performance of the proposed framework compared to existing methods.
S

SunView 深度解读

该增量学习框架对阳光电源ST系列储能变流器和PowerTitan大型储能系统的在线监测具有重要应用价值。局部放电是高压开关设备绝缘劣化的关键指标,该技术的边缘-云协同架构与iSolarCloud平台理念高度契合,可实现分布式储能电站的开关柜实时监测。特征对齐的知识蒸馏方法能将云端复杂模型压缩至边缘设备,满足储能系统本地决策的实时性要求和通信带宽限制。增量学习机制支持模型持续优化,无需重训练即可适应新故障模式,显著提升阳光电源储能产品的预测性维护能力和系统可靠性,降低高压设备意外停机风险。