← 返回
储能系统技术 储能系统 强化学习 ★ 4.0

基于强化学习的CANFIS控制器自适应切负荷用于频率恢复准则导向控制

Reinforcement Learning Based Adaptive Load Shedding by CANFIS Controllers for Frequency Recovery Criterion-Oriented Control

作者 Hao Yang · Bo Jin · Zhaohao Ding · Zhenglong Sun · Cheng Liu · Dongfeng Yang
期刊 IEEE Transactions on Power Systems
出版日期 2024年5月
技术分类 储能系统技术
技术标签 储能系统 强化学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 频率恢复准则 自适应切负荷方法 CANFIS控制器 强化学习DPG算法 分散式切负荷策略
语言:

中文摘要

为满足电网导则中严格的频率恢复准则(FRC),本文提出一种面向受端电网的实时自适应切负荷方法。构建基于协同自适应神经模糊推理系统(CANFIS)的切负荷控制器,以母线频率的幅值偏差和恢复时间偏差作为反馈信号,实现智能切负荷决策。引入基于强化学习的确定性策略梯度(DPG)算法优化控制器性能,在最小切负荷成本下确保频率恢复满足FRC,并提升鲁棒性。通过在负荷站部署CANFIS控制器形成分散式控制策略,可实时自适应决策切负荷的时机、位置、量值与轮次。省级受端电网仿真验证了该方法的有效性与适应性。

English Abstract

To ensure modern power systems with the ability to ride through frequency excursions after a power deficit, a refined and strict frequency recovery criterion (FRC) is formulated by grid codes. According to the FRC, this paper proposes a real-time adaptive load shedding method for frequency recovery control in receiving-end power systems. A co-active neuro-fuzzy inference system (CANFIS) based load shedding controller is developed for intelligent load shedding control. The magnitude deviation and the recovery time deviation of bus frequency are extracted based on the FRC and taken as feedback signals, while the shedding amount at current shedding round and the time delay of the next round are used as control signals. To further promote the control performance of the CANFIS controller, a reinforcement learning (RL) based deterministic policy gradient (DPG) algorithm is proposed, making the frequency recovery meet the FRC with the lowest cost of load shedding and enhancing robustness. Then, a decentralized load shedding strategy is constructed by CANFIS controllers deployed at load stations. Responding to the severity of frequency condition, the strategy can adaptively determine the time, location, amount and round of load shedding in real-time to make frequency recovery satisfy the FRC. Through simulations on a provincial receiving-end power system, the effectiveness and adaptability of the proposed method are demonstrated.
S

SunView 深度解读

该自适应切负荷技术对阳光电源PowerTitan储能系统和ST系列储能变流器具有重要应用价值。CANFIS控制器结合强化学习的频率响应策略可直接集成到储能系统的电网支撑功能中,增强构网型GFM控制的频率调节能力。通过实时监测母线频率偏差,储能系统可智能决策放电功率和持续时间,在满足电网FRC要求的同时最小化电池循环损耗。该分散式控制架构与阳光电源iSolarCloud云平台的分布式能源管理理念高度契合,可应用于省级电网侧储能项目,提升虚拟同步机VSG技术的自适应性和鲁棒性,为大规模新能源接入下的电网频率稳定提供智能化解决方案。