← 返回
储能系统技术 储能系统 强化学习 ★ 5.0

高渗透率可再生能源电力系统实时调度:一种专家知识与强化学习混合方法

Real-Time Scheduling of High-Penetrated Renewable Power Systems: An Expert Knowledge and Reinforcement Learning Hybrid Approach

作者 Sijun Du · Tao Ding · Yang Xiao · Jingyu Wan · Jun Liu · Fei Meng
期刊 IEEE Transactions on Power Systems
出版日期 2024年7月
技术分类 储能系统技术
技术标签 储能系统 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源电力系统 实时调度 专家知识 强化学习 可再生能源消纳
语言:

中文摘要

现代电力系统正向低碳可持续转型,可再生能源渗透率的提升及其不确定性给系统调度带来严峻挑战,灵活元件的引入进一步增加了调度复杂性。为此,本文提出一种融合专家知识与强化学习(RL)的混合实时调度方法。首先建立包含柔性负荷与储能的高渗透率可再生能源系统实时调度模型,并转化为马尔可夫决策过程。通过引入专家知识作为系统与RL智能体之间的中介,利用RL算法优化的机组控制序列进行调度决策。基于SG 126节点系统的算例验证了所提方法在保障系统安全稳定运行的同时,显著提升可再生能源消纳能力的有效性与潜力。

English Abstract

Modern power systems are undergoing a low-carbon and sustainable transition. The increasing penetration of renewable energy sources (RESs) poses significant challenges to the power system scheduling due to the associated uncertainties. Moreover, the integration of various flexible elements further complicates the scheduling problem. Therefore, rapid and accurate real-time scheduling methods are required to ensure the safe and stable operation of the power system. In this paper, a hybrid approach of expert knowledge and reinforcement learning (RL) is proposed to solve the real-time scheduling problem of the high-penetrated renewable power system. Firstly, a mathematical model for real-time scheduling of the high-penetrated renewable power system including flexible loads and energy storages (ESs) that integrates system operating costs and constraints, and RESs consumption is established and formulated as a Markov decision process. Subsequently, the proposed approach introduces expert knowledge as an intermediary between the power system and the RL agent, utilizing the optimized unit control sequence derived from the RL algorithm for scheduling decisions. Case studies conducted on the SG 126-bus system validate the effectiveness of the proposed approach and demonstrate its tremendous potential to facilitate RES consumption.
S

SunView 深度解读

该混合调度方法对阳光电源PowerTitan储能系统和iSolarCloud平台具有重要应用价值。强化学习与专家知识融合的实时调度策略可直接应用于ST系列储能变流器的智能控制算法,优化充放电决策以应对高比例光伏接入的不确定性。该方法可集成至iSolarCloud云平台,实现多站点储能系统协同调度,提升新能源消纳率。对于光储一体化项目,该技术能增强SG逆变器与储能系统的协同响应能力,通过实时优化柔性负荷与储能出力,降低弃光率并提高系统经济性。建议将马尔可夫决策模型嵌入储能EMS能量管理系统,开发具备自学习能力的智能调度模块。