← 返回
光伏发电技术 工商业光伏 ★ 5.0

数据驱动的工业屋顶光伏系统积尘估计与优化清洗策略

Data-Driven Soiling Estimation and Optimized Cleaning Strategies for Industrial Rooftop PV Systems

作者 Ankit Pal · Saravana Ilango Ganesan · Maddikara Jaya Bharata Reddy
期刊 IEEE Journal of Photovoltaics
出版日期 2025年1月
技术分类 光伏发电技术
技术标签 工商业光伏
相关度评分 ★★★★★ 5.0 / 5.0
关键词 太阳能光伏板 积尘率 数据驱动方法 动态清洁计划 经济效益
语言:

中文摘要

太阳能光伏(PV)面板上灰尘和污垢的积累(即积尘)会降低光伏电站的发电量和转换效率。因此,定期清洁对于维持电站的最佳性能和经济可行性至关重要。在低日照、降雨或多云等时段,固定间隔的清洁计划会变得不经济。本研究提出了一种数据驱动的方法,利用功率、温度和辐照度数据来估算印度一座504千瓦峰值的屋顶光伏电站的积尘率(SR)。该方法采用了一个基于环境温度和太阳辐照度的光伏面板温度估算模型,无需直接测量温度,从而简化了过程。分析表明,尽管有降雨,定期清洁仍然必不可少,各逆变器因积尘造成的能量损失在32%至47%之间,日积尘率为4.6% - 5.5%。为减少这些损失,制定了一个考虑天气和积尘状况的动态清洁计划。经济评估表明,按照所提出的动态计划进行人工清洁具有成本效益,将能量增益与清洁成本相比较,利润率可达48% - 77%。与固定间隔清洁相比,所提出的方法在保持相同平均积尘率的情况下,各逆变器的盈利能力提高了25% - 49%。

English Abstract

The accumulation of dust and dirt on solar photovoltaic (PV) panels, known as soiling, reduces energy generation and conversion efficiency of a PV plant. Therefore, regular cleaning is essential to maintain optimal plant performance and economic viability. Fixed-interval cleaning schedules become uneconomical during periods such as low-insolation, rainy, or cloudy events. This study proposes a data-driven method to estimate the soiling ratio (SR) for a 504-kWp rooftop PV plant in India using power, temperature, and irradiance data. A PV panel temperature estimation model is employed, based on ambient temperature and solar irradiance, which simplifies the process by eliminating the need for direct temperature measurements. The analysis reveals that regular cleaning is essential despite rainfall, with energy losses due to soiling ranging from 32% to 47% across inverters, with soiling rates of 4.6–5.5% per day. A dynamic cleaning schedule, considering weather and soiling conditions, was developed to reduce these losses. Economic evaluation demonstrated that manual cleaning following the proposed dynamic schedule is cost effective, with profit margins of 48–77%, comparing energy gain and cleaning cost. Compared with fixed-interval cleaning, the proposed method maintained the same average SR but yielded 25–49% higher profitability across inverters.
S

SunView 深度解读

该数据驱动积尘估算技术对阳光电源iSolarCloud智能运维平台具有直接应用价值。可集成至SG系列光伏逆变器的智能诊断模块,通过实时功率数据与气象信息融合,精准识别积尘导致的发电损失,区别于设备故障。动态清洗优化策略可嵌入预测性维护系统,结合MPPT算法的效率监测数据,为工商业光伏电站制定经济最优的清洗周期。该方法与阳光电源现有的IV曲线诊断、红外热成像等技术形成互补,提升智能运维的颗粒度,特别适用于工业屋顶等高积尘场景,可显著降低运维成本并提高发电量,增强iSolarCloud平台的市场竞争力。