← 返回
功率器件技术 GaN器件 可靠性分析 ★ 4.0

用于金星及其他高温应用的InAlN/GaN圆形晶体管研究

Investigation of InAlN/GaN Circular Transistors for Venus and Other High-Temperature Applications

作者 Savannah R. Eisner · Yi-Chen Liu · Jared Naphy · Ruiqi Chen · Mina Rais-Zadeh · Debbie G. Senesky
期刊 IEEE Transactions on Electron Devices
出版日期 2025年3月
技术分类 功率器件技术
技术标签 GaN器件 可靠性分析
相关度评分 ★★★★ 4.0 / 5.0
关键词 InAlN/GaN HEMTs 高温环境 性能表现 可靠性 器件退化
语言:

中文摘要

本研究考察了耗尽型In₀.₁₈Al₀.₈₂/GaN-on-Si圆形高电子迁移率晶体管(C - HEMT)在高温环境下的性能和长期可靠性。晶体管在空气中472 °C以及模拟金星条件(超临界二氧化碳,1348 psi)下465 °C的环境中运行了5天。加热过程中,在空气和金星表面条件下均观察到最大漏极电流($I_{\textit {D}\text {,max}}$)减小以及阈值电压($V_{TH}$)正向漂移。导通/关断电流比($I_{\text {ON} }$/$I_{\text {OFF} }$)和关态栅极泄漏电流($I_{\textit {G} {, \text {OFF}}}$)在加热过程中呈现出取决于环境的独特变化趋势,但在达到标称468 °C时数值相近。在空气中高温运行5天期间,钼/金栅极接触表现出良好的性能,$I_{\textit {D}\text {,max}}$减小9%,$V_{TH}$漂移3%。$I_{\text {ON} }$/$I_{\text {OFF} }$提高了8%,$I_{\textit {G} {, \text {OFF}}}$降低了38%。相比之下,在超临界二氧化碳环境中器件退化更为显著,因为渗透性增加影响了关态电流。在模拟金星表面条件下原位运行的C - HEMT的$I_{\textit {D}\text {,max}}$减小了11%,$V_{TH}$漂移7%,$I_{\text {ON} }$/$I_{\text {OFF} }$减小30%,$I_{\textit {G} {, \text {OFF}}}$减小23%。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)观察到的电气性能变化与表面形貌变化之间的相关性,为退化机制提供了更深入的见解。尽管如此,这些晶体管表现出了显著的抗退化能力,其广泛的可用偏置点确保了在极端条件下电路级应用的多功能运行。这些发现强调了InAlN/GaN HEMT适用于无需冷却、无需气密密封的高温应用。

English Abstract

This study examines the performance and long-term reliability of depletion-mode In0.18Al0.82/GaN-on-Si circular high electron mobility transistors (C-HEMTs) in high-temperature environments. Transistors were operated at 472 °C in air and 465 °C under simulated Venus conditions (supercritical CO2, 1348 psi) over 5 days. During heating, a reduction in maximum drain current (I _ D {,max} ) and a positive threshold voltage (VTH) shift are observed in both air and Venus surface conditions. The ON/OFF current ratio (I _ ON /I _ OFF ) and OFF-state gate leakage current (I _ G {, {OFF}} ) exhibit unique trends during heating depending on the ambient, yet values upon reaching nominal 468 °C are similar. During the 5-day operation at high-temperature in air, the Mo/Au gate contact demonstrated robust performance with 9% I _ D {,max} reduction and 3% VTH shift. I _ ON /I _ OFF improved by 8%, and I _ G {, {OFF}} decreased by 38%. In comparison, device degradation was more significant in supercritical CO2, where the increased permeability affected the OFF-state current. The C-HEMT operated in situ Venus surface conditions exhibited 11% reduction in I _ D {,max} , 7% VTH shift, 30% reduction in I _ ON /I _ OFF , and 23% reduction in I _ G {, {OFF}} . Correlation between electrical performance shifts and surface morphology changes, as observed through scanning electron microscopy (SEM) and atomic force microscopy (AFM), provides deeper insights into degradation mechanisms. Despite this, the transistors showed remarkable resilience, and their wide range of available bias points ensures versatile operation for circuit-level implementations in extreme conditions. These findings underscore the suitability of InAlN/GaN HEMTs for uncooled, high-temperature applications without hermetic sealing.
S

SunView 深度解读

从阳光电源的业务视角来看,这项InAlN/GaN圆形晶体管的极端环境可靠性研究具有重要的技术参考价值。虽然研究聚焦于金星表面等极端应用场景,但其核心技术突破对我们在光伏逆变器和储能系统中面临的高温挑战具有直接启示意义。

该研究验证了InAlN/GaN HEMT器件在472°C高温下连续5天运行的可靠性,这与我们光伏逆变器功率模块在沙漠、热带等极端气候下的工作环境存在技术关联性。当前我们的IGBT和SiC功率器件在高温环境下仍需复杂的散热系统,而GaN基器件展现的耐高温特性若能在200-250°C工作温度范围内实现商业化应用,将显著简化散热设计,提升系统功率密度,降低整体成本。

特别值得关注的是研究中Mo/Au栅极接触在高温下的稳定性表现——5天测试中最大漏极电流仅下降9%,开关电流比改善8%。这种长期稳定性对于要求25年以上运行寿命的光伏逆变器至关重要。然而,器件在超临界CO2环境下的性能退化提醒我们,GaN器件的封装和钝化层设计需要针对实际应用环境进行优化。

从技术成熟度评估,该研究仍处于基础科研阶段,距离工业级应用存在较大差距。主要挑战包括:成本控制、大规模制造工艺稳定性、与现有电路拓扑的兼容性等。但这为我们跟踪下一代宽禁带半导体技术路线提供了前瞻性参考,建议持续关注InAlN/GaN技术在中等温度范围(150-300°C)的应用潜力,并评估其在高功率密度逆变器和车载充电系统中的可行性。