← 返回
增强型GaN p-FET及互补逻辑电路的偏振增强设计与开发
Design and Development of Polarization-Enhanced E-Mode GaN p-FET and Complementary Logic (CL) Circuits
| 作者 | Teng Li · Jingjing Yu · Sihang Liu · Yunhong Lao · Jiawei Cui · Hengyuan Qi |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年4月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | GaN器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | E模式GaN p-FET 极化增强技术 沟道厚度 阈值电压 GaN互补逻辑电路 |
语言:
中文摘要
p型氮化镓(GaN)层中镁(Mg)受主的低电离率是导致增强型(E-mode)GaN p沟道场效应晶体管(p-FET)电流密度较低的关键因素。在本研究中,采用极化增强技术来提高p-GaN沟道的电离率。为实现GaN互补逻辑(CL)电路,制备了高性能的凹槽栅E-mode GaN p-FET。在制备过程中,发现沟道厚度($t_x$)是影响器件性能指标的关键参数。随着$t_x$减小(即凹槽深度增大),可获得更负的阈值电压($V_{th}$);然而,代价是导通电阻($R_{on}$)增大。沟道厚度$t_x$为32 nm的E-mode GaN p-FET的阈值电压为 -1.1 V,电流密度高达17.7 mA/mm,导通电流($I_{on}$)与关断电流($I_{off}$)之比达到$6.9\times 10^{7}$,亚阈值摆幅(SS)低至93 mV/十倍。此外,在同一外延片上制备了E-mode n沟道p-GaN栅高电子迁移率晶体管(HEMT),其阈值电压为1.3 V,导通电阻为$6~\Omega\cdot$mm。最后,制备了GaN CL反相器,并在电源电压($V_{DD}$)为6 V的条件下进行了验证,实现了轨到轨电压摆幅和低静态功耗。本研究进一步证实了GaN CL集成电路和功率集成电路(PIC)的可行性。
English Abstract
The low ionization rate of Mg acceptors in the p-gallium nitride (GaN) layer is a critical factor accounting for the low current density of E-mode GaN p-FETs. In this work, polarization-enhanced technology was adopted to enhance the ionization rate of the p-GaN channel. High-performance recessed-gate E-mode GaN p-FETs were fabricated to enable GaN complementary logic (CL) circuits. During fabrication, the channel thickness ( t_x ) is found to be a critical parameter that influences the device metrics. With a decrease in t_x (i.e., larger recess depth), a more negative threshold voltage ( V_ th ) is achieved; however, the trade-off is an increase in R_ on . The E-mode GaN p-FET with t_x =32 nm exhibits a V_ th of −1.1 V, a high current density of 17.7 mA/mm, a high I_ on / I_ off of 6.9 10^7 , and a low subthreshold swing (SS) of 93 mV/dec. Furthermore, an E-mode n-channel p-GaN gate high electron mobility transistor (HEMT) was fabricated on the same epi-wafer, exhibiting a V_ th of 1.3 V and an R_ on of 6~ mm. Finally, a GaN CL inverter was fabricated and demonstrated under V_ DD =6 V. Rail-to-rail voltage swing and low static power consumption were both achieved. This work further validates the feasibility of GaN CL integrated circuits and power integrated circuits (PICs).
S
SunView 深度解读
从阳光电源的业务视角来看,这项氮化镓(GaN)互补逻辑电路技术具有显著的战略价值。该研究通过极化增强技术突破了p型GaN器件的电流密度瓶颈,实现了17.7 mA/mm的高电流密度和6.9×10^7的开关比,为GaN功率集成电路(PIC)的商业化应用奠定了重要基础。
对于阳光电源的核心产品线,该技术的潜在价值体现在多个维度。在光伏逆变器领域,GaN互补逻辑电路能够实现轨到轨电压摆幅和极低的静态功耗,这对提升逆变器效率、降低待机损耗具有直接意义。特别是在分布式光伏和户用储能系统中,静态功耗的降低可显著改善系统全生命周期的能效表现。在储能变流器(PCS)应用中,互补逻辑架构的驱动电路可提供更快的开关速度和更低的驱动损耗,有助于实现更高功率密度和更紧凑的系统设计。
从技术成熟度评估,该研究已实现n型和p型器件在同一外延片上的集成制造,并成功演示了反相器电路功能,表明技术已进入工程验证阶段。然而,沟槽深度对阈值电压和导通电阻的权衡关系揭示了工艺控制的复杂性,这对大规模量产提出了挑战。
对阳光电源而言,关键机遇在于:通过早期介入GaN互补逻辑技术的产业化进程,可在下一代高频、高效功率转换系统中建立技术先发优势。建议重点关注该技术在高频LLC谐振变换器、多电平拓扑驱动电路等场景的适配性验证,同时需评估工艺稳定性、成本结构及与现有Si/SiC方案的竞争力平衡点。