← 返回
理解平面SiC功率MOSFET在雪崩击穿后第三象限工作期间反向导通电压正向偏移的机制
Toward Understanding the Positive Shift of Reverse Turn-on Voltage in the Third Quadrant Operation in Planar SiC Power MOSFETs After Avalanche Breakdown
| 作者 | Wei-Cheng Lin · Yu-Sheng Hsiao · Chen Sung · Chu Thị Bích Ngọc · Rustam Kumar · Pei-Jie Chang |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年2月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 平面SiC功率MOSFET 第三象限特性 反向导通电压 阈值电压 空穴俘获 |
语言:
中文摘要
本研究探讨了平面SiC功率MOSFET在超过雪崩击穿条件的高漏极偏压下第三象限特性的稳定性。通过实验测量与TCAD仿真,分析了第三象限运行中反向导通电压(Vrev,on)正向漂移的机理。当漏极偏压从1500 V增至1620 V时,观察到阈值电压(VTH)明显负向漂移,同时Vrev,on出现正向漂移。TCAD仿真表明,该现象源于p阱区高电场引发的碰撞电离效应。进一步引入位于SiO2/SiC界面附近栅氧化层中的正固定电荷作为空穴陷阱后,仿真结果与实验一致。结果表明,雪崩击穿以上高漏压导致的空穴俘获会影响器件第三象限工作的稳定性。
English Abstract
In this study, we explore the stability of third-quadrant characteristics in planar SiC power MOSFETs under high drain bias above the avalanche breakdown condition. By using experimental measurements and TCAD simulations, we analyze the mechanisms responsible for the positive shift of reverse turn-on voltage ( V_ rev, {on} ) during the third-quadrant operation. When the drain bias is increased from 1500 to 1620 V, obvious negative shifts in threshold voltage ( V_ TH ) and positive shifts in V_ rev, {on} are observed. The TCAD simulations attribute these shifts to the impact ionization caused by the high electric field inside the p-well regions. Furthermore, with the inclusion of positive fixed charges as the hole traps in the gate oxide near the SiO2/SiC interface, the simulation results show positive shifts of V_ rev, {on} consistent with the experimental results. These findings suggest that hole trapping caused by high drain bias above the avalanche breakdown condition can affect the stability of third-quadrant operation in planar SiC power MOSFETs.
S
SunView 深度解读
该研究揭示的SiC MOSFET雪崩击穿后第三象限特性退化机理,对阳光电源功率器件应用具有重要价值。在ST储能变流器和SG光伏逆变器中,SiC MOSFET常工作在硬开关和体二极管续流模式,第三象限反向导通特性直接影响系统效率和可靠性。研究指出的栅氧界面空穴俘获导致Vrev,on正漂移现象,为优化器件选型和过压保护设计提供依据:建议在1500V系统中严格控制漏极电压裕量,避免接近雪崩区工作;在电机驱动和OBC充电机等高频开关应用中,需重点评估第三象限导通损耗漂移对长期可靠性的影响,并通过TCAD仿真优化栅氧工艺,提升阳光电源功率模块的抗退化能力。