← 返回
自适应事件触发滑模负荷频率控制在虚假数据注入攻击下的信息物理电力系统
Adaptive Event-Triggered Sliding Mode Load Frequency Control for Cyber-Physical Power Systems Under False Data Injection Attacks
| 作者 | Weiru Guo · Fang Liu · Yalin Wang · Denis Sidorov · Jun Wu |
| 期刊 | IEEE Transactions on Industrial Informatics |
| 出版日期 | 2024年12月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 信息物理电力系统 负荷频率控制 虚假数据注入攻击 自适应事件触发滑模控制 通信资源 |
语言:
中文摘要
作为新一代电力系统,随着通信网络的应用,信息物理电力系统(CPPS)变得更加智能和便捷。然而,时滞和网络攻击的存在给系统控制带来了挑战。本文研究了CPPS在虚假数据注入(FDI)攻击下的负荷频率控制(LFC)问题,并基于自适应事件触发机制应用滑模控制方案来解决LFC问题。首先,考虑时滞和FDI攻击,建立了具有自适应事件触发滑模控制(AET - SMC)方案的动态多区域LFC模型。然后,基于基于延迟乘积项的循环泛函构造了一种新颖的Lyapunov - Krasovskii泛函,用于分析系统的稳定性。此外,通过求解线性矩阵不等式,提出了AET - SMC方案的设计方法。还证明了该控制律能够在有限时间内将系统状态轨迹驱动到设计的滑模面。最后,利用两个LFC系统在MATLAB/Simulink中验证了所提出控制方案的有效性和优越性。与时间触发方案相比,稳态误差降低了约95%,传输频率降低了约50%。仿真结果验证了所提出的方案能够提高FDI攻击下LFC系统的控制性能并节省通信资源。此外,基于OPAL - RTLAB 5707进行了实时仿真,验证了所提方法的可行性。
English Abstract
As the new generation of power systems, cyber-physical power systems (CPPSs) become more intelligent and convenient with the application of communication networks. However, the existence of time delays and cyber attacks brings challenges to the control of the system. In this article, the load frequency control (LFC) problem in the CPPS under false data injection (FDI) attacks is investigated and the sliding mode control scheme is applied to address the LFC problem based on an adaptive event-triggered mechanism. First, a dynamic multiarea LFC model with adaptive event-triggered sliding mode control (AET-SMC) scheme is established considering time delays and FDI attacks. Then, a novel Lyapunov–Krasovskii functional is constructed based on the delay-product-term-based looped functional to analyze the stability of the system. Furthermore, the AET-SMC scheme design method is developed by solving linear matrix inequalities. It is also proved that the control law can drive the system state trajectory to the designed sliding surface within a limited time. Finally, two LFC systems are employed to demonstrate the effectiveness and superiority of the proposed control scheme in MATLAB/Simulink. The steady-state error is decreased by about 95% and the transmission frequency is decreased by about 50% compared with the time-triggered scheme. The simulation results verify that the proposed scheme can improve the control performance and save the communication resources for the LFC system under FDI attacks. In addition, the real-time simulation is done based on OPAL-RTLAB 5707 to verify the feasibility of the proposed method.
S
SunView 深度解读
从阳光电源的业务视角来看,这项基于自适应事件触发滑模控制的负荷频率控制技术具有重要的战略价值。随着公司在光储一体化、微电网及虚拟电厂等领域的深入布局,信息物理融合电力系统(CPPS)的安全稳定控制已成为核心技术挑战。
该技术的核心价值体现在三个维度:首先,针对虚假数据注入攻击的防护机制直接契合阳光电源储能系统和智能逆变器在电网互联场景中的安全需求。公司的1500V储能系统及大型光伏电站在参与电网调频服务时,必须应对日益严峻的网络安全威胁。其次,自适应事件触发机制将通信频率降低约50%,这对降低分布式能源管理系统的通信成本、提升系统可扩展性具有显著意义,特别适用于公司海外大型地面电站项目。第三,稳态误差减少95%的控制性能提升,可直接转化为更精准的频率响应能力,增强阳光电源储能产品在辅助服务市场的竞争力。
从技术成熟度评估,该方法已完成OPAL-RTLAB实时仿真验证,具备工程化应用基础,但从学术研究到产品级应用仍需跨越鸿沟。主要挑战包括:多区域电网模型的参数辨识复杂度、与现有EMS系统的集成适配、以及不同攻击场景下的鲁棒性验证。建议公司可将此技术纳入下一代智能控制器研发路线图,优先在微电网储能控制器中试点应用,并与高校合作建立网络攻击测试平台,逐步形成具有自主知识产权的安全控制解决方案,这将成为阳光电源在高端电力电子装备市场的重要差异化优势。