← 返回
储能系统技术 储能系统 强化学习 ★ 4.0

基于吸引力增强型强化学习的去中心化多机器人鱼协同捕食控制

Decentralized Multirobotic Fish Pursuit Control With Attraction-Enhanced Reinforcement Learning

作者 Yukai Feng · Zhengxing Wu · Jian Wang · Junwen Gu · Fuyang Yu · Junzhi Yu
期刊 IEEE Transactions on Industrial Electronics
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 强化学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 多机器鱼系统 协同追捕 自适应算法 强化学习 课程学习
语言:

中文摘要

自适应且高效的协同控制对多机器人鱼系统至关重要,可显著提升其在复杂水下任务中的表现。本文提出一种专为多机器人鱼协同追捕设计的新型自适应算法,融合吸引力机制与强化学习技术,使机器人鱼能依据局部观测与环境线索做出自适应决策。针对机器人鱼的独特动力学特性构建了状态转移环境,并结合课程学习方法设计了去中心化的追捕策略。仿真与实物实验验证了该策略的有效性与适应性,为复杂水下环境中多机器人鱼系统的协同控制提供了重要参考。

English Abstract

Adaptive and efficient cooperative control is a crucial capability for multirobotic fish systems, as it can substantially enhance their performance in complex underwater tasks. The pursuit and evasion dynamics in such topics have gained significant attention from the scientific community. In this article, we present a novel adaptive algorithm tailored specifically for cooperative pursuit among multirobotic fish systems. Benefiting from the integration of attraction mechanisms and reinforcement learning techniques, the proposed method empowers the robotic fish to make adaptive decisions based on local observations and environmental cues. Meanwhile, a state transition environment has been customized to the unique dynamics of robotic fish, equipping the cooperative pursuit strategy to fulfill practical application requirements and facilitate adaptation across diverse platforms. Besides, based on the curriculum learning approach, a decentralized pursuit policy is also formulated and implemented within the developed robotic fish system. Simulations and real-world experiments have validated the efficiency and adaptability of this cooperative pursuit strategy. This research offers valuable insights and contributions to the exploration of cooperative control in multirobotic fish systems, addressing the critical challenge of achieving adaptive and efficient coordination in complex underwater environments.
S

SunView 深度解读

该去中心化多智能体协同控制技术对阳光电源分布式储能系统具有重要借鉴价值。文中的吸引力增强型强化学习算法可应用于PowerTitan大型储能系统的多模块协同控制,实现基于局部观测的自适应功率分配与负载均衡。去中心化决策架构可提升ST系列储能变流器集群的容错性与可扩展性,避免单点故障。课程学习方法可优化iSolarCloud平台的智能调度策略,使分布式光储系统在复杂电网环境下实现自适应协同运行。该技术还可应用于充电桩网络的动态负荷管理,通过多智能体协同优化充电功率分配,提升电网友好性与运营效率。