← 返回
基于动态模型与神经网络的微燃机在混合燃料
NG & H₂)下的
| 作者 | Quan Liab · Qian Zhang · Lei Zhang |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 346 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | SiC器件 深度学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Development of a high-precision black box model tailored for MGT systems. |
语言:
中文摘要
摘要 微型燃气轮机(MGTs)正逐渐成为偏远地区和岛屿的一种多功能离网供电解决方案,同时也作为微智能电网的可靠电源,为传统集中式发电与输电提供了可行替代方案。本研究提出了一种新颖的混合性能预测框架,该框架融合了基于物理原理的白箱模型(WBM)与数据驱动的黑箱模型(BBM),实现了对MGT性能的高精度且计算高效的评估。以一台100 kW的MGT为参考系统,分别对回热循环(RC)和简单循环(SC)两种构型在环境温度为258.15 K、273.15 K和288.15 K条件下进行了分析,并系统地改变了天然气中氢气的体积分数(HVF,氢气含量从0%到100%)。为进一步提升预测能力,采用先进的机器学习算法(KNNR、RFR、Extra Trees和BR)对关键性能指标进行训练,并利用NSGA-III和MOEA/D算法开展多目标优化,以实现效率与运行灵活性的同时提升。结果表明,在燃料效率和余热回收方面,特别是在高氢气体积分数条件下,RC构型显著优于SC构型,其中RFR模型表现出最高的预测精度。所提出的快速启动MGT与储能耦合机制,在孤立微电网的自主、韧性电力供应方面展现出强大潜力。通过结合热力学建模、机器学习与多目标优化方法,本研究为科学界提供了一种可复现的方法论,有助于加速基于氢气的混合燃料MGT系统的设计、运行与控制。该框架可便捷扩展至其他分布式能源技术,支持其未来与可再生能源发电、脱碳战略以及智能能源管理系统的一体化集成。
English Abstract
Abstract Micro gas turbines (MGTs) are emerging as a versatile off-grid power solution for remote regions and islands, and as a reliable power source for micro smart grids, offering a viable alternative to conventional centralized generation and transmission. This study introduced a novel hybrid performance prediction framework that integrates a physics-based white box model (WBM) with a data-driven black box model (BBM), enabling high-precision and computationally efficient evaluation of MGT performance. Taking a 100-kW MGT as the reference system, both regenerative cycle (RC) and simple cycle (SC) configurations were analyzed across ambient temperatures of 258.15 K, 273.15 K and 288.15 K, while systematically varying the hydrogen volume fraction (HVF) in natural gas (hydrogen from 0 % to 100 %). To further enhance predictive capability, advanced machine learning algorithms (KNNR, RFR, Extra Trees and BR) were trained for key performance metrics, and multi-objective optimization was performed using NSGA-III and MOEA/D to achieve simultaneous improvement of efficiency and operational flexibility. The results revealed that RC configuration significantly outperform SC configuration in fuel efficiency and waste heat recovery, particularly at high HVFs, with the RFR model delivering the highest predictive accuracy. The proposed fast-start MGT energy storage coupling mechanism demonstrated strong potential for autonomous, resilient power supply in isolated microgrids. By combining thermodynamic modeling, machine learning and multi-objective optimization, this research provides a reproducible methodology for the scientific community to accelerate the design, operation and control of hydrogen-based hybrid-fuel MGT systems. The framework is readily extensible to other distributed energy technologies, supporting their future integration with renewable generation, decarbonization strategies and intelligent energy management systems.
S
SunView 深度解读
该混合燃料微燃机研究对阳光电源储能系统具有重要启示价值。论文提出的物理模型与神经网络融合预测框架,可借鉴应用于ST系列PCS的多场景功率预测与能量管理优化。其快速启动机制与储能耦合方案,契合PowerTitan在孤岛微网的GFM控制需求。多目标优化算法(NSGA-III)可用于ESS充放电策略优化,提升效率与灵活性。深度学习预测方法可集成至iSolarCloud平台,实现储能系统预测性维护与智能调度,支撑分布式能源协同控制与脱碳目标。