← 返回
储能系统技术 GaN器件 ★ 5.0

热处理对ZIF-67衍生的三元金属氧化物-碳

Mg, Ni, Co)3O4@C微观结构和电化学性能的影响

作者 Fatemeh Shekofteh · Hadi Arabi
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 储能系统技术
技术标签 GaN器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 金属有机框架 热处理温度 电化学性能 锂离子电池 三元金属氧化物-碳复合材料
语言:

中文摘要

金属有机框架(MOF)衍生材料因其高孔隙率和大比表面积,在能量存储应用中展现出巨大潜力。然而,由于热处理因素对最终化合物的影响,这类材料的合成仍具有挑战性。本研究通过将Ni和Mg离子引入ZIF-67结构中,成功合成了三元金属有机框架MgNi-ZIF-67。对该化合物进行后续碳化处理,得到了一种新型的三元金属氧化物-碳纳米复合材料(Mg, Ni, Co)3O4@C。我们系统研究了三种不同热处理工艺对该纳米复合材料作为锂离子电池负极时的微观结构和电化学性能的影响。结果表明,在较低升温速率下碳化所得样品(Z2)表现出优异的电化学性能,在500 mA g−1电流密度下初始放电容量达580.2 mAh g−1,经过100次循环后仍保持480.1 mAh g−1的可逆容量。值得注意的是,Z2在高达2000 mA g−1的高电流密度下仍能实现204.4 mAh g−1的放电容量。Z2优异的电化学稳定性归因于在优化的气氛条件和升温速率下碳化过程中较好地保留了MOF前驱体的碳骨架结构,从而促进了粒径约为15 nm的三元金属氧化物纳米颗粒在碳基质中的均匀分布。该结构形成了具有高比表面积(198.62 m² g−1)的多孔结构,有利于锂离子的传输与嵌入/脱出,适用于锂离子电池负极材料。本研究强调了热处理参数在提升MOF衍生纳米复合材料用于能量存储领域性能中的关键作用。

English Abstract

Metal–organic framework (MOF) derived materials have shown great potential for energy storage applications, due to their high porosity and large surface area.Query However, synthesizing these materials is challenging due to the effect of heat treatment factors on the resulting compound. This study reports the synthesis of a trimetal-organic framework, MgNi-ZIF-67, by incorporating Ni and Mg ions into the ZIF-67 structure. Subsequent carbonization of this compound resulted in a novel trimetallic oxide–carbon nanocomposite, (Mg, Ni, Co) 3 O 4 @C. We explored the effects of three distinct heat treatment protocols on the microstructural and electrochemical properties of the resulting nanocomposite as lithium-ion battery anode. The sample obtained through carbonization at a low heating rate (Z2) exhibited superior electrochemical performance, delivering an initial capacity of 580.2 mAh g –1 and retaining 480.1 mAh g –1 after 100 cycles at 500 mA g –1 . Notably, Z2 showed a capacity of 204.4 mAh g –1 even at a high current density of 2000 mA g –1 . The superior electrochemical stability of Z2 is ascribed to the preservation of the MOF’s carbon structure during carbonization under optimal atmospheric conditions and heating rate. This facilitated the formation of trimetallic oxide nanoparticles (15 nm) were evenly distributed within the carbon matrix. This led to a porous structure with a high specific surface area of 198.62 m 2 g −1 , making it suitable for lithium-ion battery anodes. This study highlights the importance of heat treatment parameters in enhancing the performance of MOF-derived nanocomposites for use in the area of energy storage.
S

SunView 深度解读

该MOF衍生三金属氧化物复合材料研究对阳光电源储能系统具有重要参考价值。其580mAh/g高比容量和优异倍率性能可启发ST系列PCS配套电池技术优化,特别是热处理工艺对纳米结构调控的方法论,可应用于PowerTitan储能系统的电池材料改进。198m²/g高比表面积多孔结构设计思路,有助于提升储能电池循环寿命和快充性能,支撑阳光电源构建更高功率密度的ESS解决方案,增强削峰填谷和调频等应用场景的响应速度。