← 返回
储能系统技术 GaN器件 ★ 5.0

三维纳米和微米球的燃烧构筑:催化与能量存储的应用进展与前景

Combustion structuring of 3D nano- and microspheres: Advances and prospects for catalysis and energy storage

作者 Hayk H.Nersisyan · Jong Hyeon Lee
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 398 卷
技术分类 储能系统技术
技术标签 GaN器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 An overview of synthesis methods for 3D nano- and microspheres is presented.
语言:

中文摘要

摘要 本综述探讨了由多种无机材料(包括金属、合金、非金属以及二元和复合金属氧化物)构成的三维纳米和微米球(N&MSs)在燃烧驱动下的结构调控。引言部分概述了N&MSs的关键合成技术,重点聚焦于三种基于燃烧的方法:自蔓延高温合成(SHS)、溶液燃烧合成(SCS)和火焰合成(FS)。第2节分析了微米球形成的基本机制以及影响该过程的热力学和动力学模型。第3节详细阐述了通过SHS、SCS和FS制备致密型和中空型N&MSs的燃烧基方法,批判性地分析了反应时间、火焰温度、反应介质以及反应物和溶剂选择对颗粒形貌和尺寸的影响。第4节重点介绍了N&MSs在能量存储、催化、传感和药物递送中的应用。最后,第5节讨论了燃烧合成在纳米和微米球制备方面的优势与局限性,并对该快速发展的领域的未来研究方向提出了展望。

English Abstract

Abstract This review explores the combustion-driven structuring of three-dimensional nano- and microspheres (N&MSs) composed of various inorganic materials, including metals, alloys, non-metals, and binary and complex metal oxides. The introduction provides an overview of key synthesis techniques for N&MSs, with a focus on three combustion-based methods: self-propagating high-temperature synthesis (SHS), solution combustion synthesis (SCS), and flame synthesis (FS). Section 2 examines the fundamental mechanisms governing microsphere formation and the thermodynamic and kinetic models influencing this process. Section 3 details combustion-based approaches for fabricating dense and hollow N&MSs via SHS, SCS, and FS, critically analyzing how reaction time, flame temperature, reaction medium, and the choice of reactants and solvents impact particle morphology and size. Section 4 highlights the applications of N&MSs in energy storage, catalysis, sensing, and drug delivery. Finally, Section 5 discusses the advantages and limitations of combustion synthesis for nano- and microsphere production, offering perspectives on future research directions in this rapidly evolving field.
S

SunView 深度解读

该燃烧合成纳微球技术对阳光电源储能系统具有重要应用价值。复杂金属氧化物微球可优化ST系列PCS的磁性元件性能,提升功率密度;空心纳米球结构可改进PowerTitan电池热管理材料的比表面积和导热性能;催化特性可应用于储能系统氢能转换环节。燃烧法快速制备、形貌可控的特点,为阳光电源开发高性能储能材料、优化三电平拓扑中的磁性器件、提升GaN功率模块散热方案提供新思路,助力储能系统能量密度和循环寿命提升。