← 返回
优化肖特基势垒二极管:PVC及PVC:钼中间层在电物理特性中的作用
Optimizing Schottky barrier diodes: the role of PVC and PVC: molybdenum interlayers in electrophysical properties
| 作者 | Yashar Azizian-Kalandaragh · Hasan Yeşilyurt |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | SiC器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 肖特基势垒二极管 PVC Mo掺杂 电物理特性 整流比 |
语言:
中文摘要
本研究采用n型硅(n-Si)晶圆制备了Au/n-Si(C0)、Au/PVC/n-Si(C1)和Au/PVC:钼(Mo)/n-Si(C2)结构,以考察聚氯乙烯(PVC)及PVC:Mo中间层对肖特基势垒二极管(SBDs)电物理特性的影响。利用X射线衍射(XRD)光谱法计算了Mo纳米结构的平均晶粒尺寸。基于电流-电压(I-V)数据提取了这些结构的电学特性。获得了这些二极管的电流输运机制(CCMs)以及表面态密度(Nss)随能量的分布情况。通过引入PVC及Mo掺杂PVC的界面聚合物层,有效降低了理想因子(n)、串联电阻(Rs)、表面态密度(Nss)和漏电流(I0),同时提高了并联电阻(Rsh)和势垒高度(BH),从而显著改善了SBDs的性能。采用电容/电导-频率(C/G-f)测量方法,在宽频率范围内研究了介电常数(ε′)、介电损耗(ε′′)以及交流电导率(σac)。文中还对低频区域出现的负电容及介电损耗起源进行了深入讨论。
English Abstract
In this research, the n-Si wafer is used to generate Au/n-Si (C 0 ), Au/PVC/n-Si (C 1 ), and Au/PVC: Molybdenum (Mo)/n-Si (C 2 ) structures to examine the effects of PVC and PVC:Mo interlayers on the electrophysical characteristics of Schottky barrier diodes (SBDs). The mean crystallite size of the Mo nanostructure is computed by X-ray diffraction (XRD) spectroscopy. The I-V data is used to derive the electrical properties of these structures. These diodes’ current conduction mechanisms (CCMs) and energy-dependent distributions of surface states (N ss ) are obtained. By reducing the ideality factor (n), series resistance (R s ), N ss , and leakage current (I 0 ), as well as raising R sh together with barrier height (BH), the usage of PVC and Mo-doped PVC interfacial polymer layers improves the performance of SBDs. Capacitance/conductance-frequency (C/G-f) measurements are used to study the dielectric constant (ε′)/loss (ε′′) and ac electrical conductivity (σ ac ) in a wide frequency range. The negative capacitance/dielectric origin at low frequencies is thoroughly discussed.
S
SunView 深度解读
该肖特基势垒二极管优化技术对阳光电源功率器件研发具有重要参考价值。研究中PVC:Mo界面层通过降低理想因子、串联电阻和漏电流,同时提升势垒高度的方法,可应用于SG系列光伏逆变器和ST储能变流器的SiC/GaN功率器件封装优化。界面工程改善可降低器件导通损耗,提升1500V高压系统可靠性。负电容特性分析为三电平拓扑中的高频开关特性优化提供理论依据,助力提升逆变器效率和电动汽车OBC充电模块的功率密度。