← 返回
铜锂共掺杂Mn3O4正极材料在水系锌离子电池中的应用
Cu-Li Co-Doped Mn3O4 cathode materials employed in aqueous zinc-ion batteries
| 作者 | Jidong Ma · Zhizhu Tang · Wenjun Zhou · Xinya Gu · Kai Du |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | GaN器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | - [Mn3O4](https://link.springer.com/search?query=MnO%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20&facet-discipline=%22Materials%20Science%22) |
语言:
中文摘要
二氧化锰因其低成本、高安全性和环境友好性,已成为水系锌离子电池(ZIBs)有前景的正极材料。然而,其实际应用受到循环稳定性差和电子导电性低的限制。本研究提出了一种铜锂共掺杂策略,以提升Mn3O4的电化学性能,并采用简便的一步溶液燃烧法制备了共掺杂材料(CLMO)。实验结果表明,Cu2+取代Mn2+位点引发了晶格收缩,缩短了Zn2+的扩散路径;而Li+通过抑制锰的溶出并稳定晶格结构,显著提高了材料的循环稳定性。协同共掺杂显著增加了氧空位浓度,从而改善了材料的电子导电性。CLMO正极在0.1 A g−1电流密度下表现出高达270 mAh g−1的可逆比容量,在0.5 A g−1下循环800圈后仍保持98%的容量,性能优于单掺杂及未掺杂样品。电化学阻抗谱(EIS)分析进一步证实,共掺杂使电荷转移电阻显著降低(从75.59 Ω降至13.17 Ω),并加速了Zn2+的扩散动力学。该研究阐明了双金属共掺杂的协同作用机制,为开发高稳定性的水系锌离子电池正极材料提供了理论依据和技术基础。
English Abstract
Manganese oxides have emerged as promising cathode materials for aqueous zinc-ion batteries (ZIBs) owing to their low cost, high safety, and environmental benignity. However, the practical application is hindered by poor cycling stability and low electronic conductivity. This study proposes a Cu-Li co-doping strategy to enhance Mn 3 O 4 ’s electrochemical performance, producing the co-doped material (CLMO) using a facile one-step solution combustion method. Experimental results revealed Cu 2+ substitution at Mn 2+ sites triggered lattice contraction, shortening Zn 2+ diffusion pathways, while Li + enhanced cycling stability by suppressing Mn dissolution and stabilizing the lattice. Synergistic co-doping significantly increased oxygen vacancy concentration, improving electronic conductivity. The CLMO cathode exhibited a remarkable capacity of 270 mAh g −1 at 0.1 A g −1 and retained 98% capacity after 800 cycles at 0.5 A g −1 , outperforming single-doped and undoped counterparts. EIS analysis further validated the reduced charge transfer resistance (13.17 Ω vs. 75.59 Ω) and accelerated Zn 2+ diffusion kinetics. These findings elucidate the synergistic mechanisms of bimetallic co-doping and offer a theoretical and technical foundation for developing high-stability ZIBs cathodes.
S
SunView 深度解读
该Cu-Li共掺杂Mn3O4正极材料技术对阳光电源储能系统及电动汽车产品线具有重要参考价值。研究中通过双金属协同掺杂实现的高循环稳定性(800次循环容量保持率98%)和低电荷转移阻抗(13.17Ω)策略,可启发ST系列储能变流器及PowerTitan系统中电池管理优化方案。锌离子电池的高安全性、低成本特性与阳光电源大规模储能应用需求高度契合。晶格调控抑制金属溶解的机制可为电池热管理和寿命预测模型提供理论支撑,助力iSolarCloud平台的预测性维护功能升级,提升储能系统全生命周期经济性。