← 返回
电动汽车驱动 SiC器件 ★ 5.0

二价掺杂Li1.3Al0.3Ti1.7(PO4)3固态电解质结构性能与离子电导率提升研究

A study on the enhancement of structural behavior and ionic conductivity of divalent-doped Li1.3Al0.3Ti1.7 (PO4)3 solid electrolytes for lithium-ion batteries

作者 Indira Sundaram
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 电动汽车驱动
技术标签 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 固态电解质 NASICON结构 LATP 离子电导率 掺杂优化
语言:

中文摘要

固态电解质(SSEs)因其更高的安全性、高能量密度以及不可燃特性,被认为是电动汽车(EVs)和电子设备未来理想的电源解决方案。基于NASICON结构的Li1.3Al0.3Ti1.7(PO4)3(LATP)在氧化物基电解质中处于领先地位,展现出优异的锂离子电导率和良好的空气稳定性。然而,高性能氧化物基电解质的发展仍面临挑战,主要由于其本身刚性大、脆性强的特点,限制了正极与负极之间理想界面的形成。在LATP基固态电解质中,位于TiO6八面体与PO4四面体之间的M1–M2空隙是锂离子传输的主要通道,该通道可通过掺杂手段进行优化,从而提高离子电导率。本研究探讨了将二价离子引入Li1.3Al0.3Ti1.7(PO4)3基电解质中,以拓宽离子传导路径,进而提升离子电导率的可行性。掺杂型Li1.3Al0.3Ti1.7(PO4)3样品通过熔融前驱体快速淬火法制备,随后经过研磨、单轴压缩成型及烧结处理,并采用扫描电子显微镜(SEM)、X射线衍射(XRD)以及阻抗电阻测试等手段进行表征分析。电化学评估结果表明,与未掺杂LATP相比,引入二价离子的LATP电解质在373–773 K的低温工作范围内表现出更优的结构性能和稳定且更高的离子电导率。这项开创性研究凸显了将镁掺杂LATP整合为混合型固态电解质在实用化全固态锂电池中的巨大应用潜力。热处理过程促使LiTi2(PO4)3相的生成,结晶形成的电解质其晶格参数受掺杂离子种类和含量的影响,不同二价离子在晶格及M1–M2瓶颈结构中引发不同程度的畸变。值得注意的是,当镁离子掺杂浓度为3 mol%时,材料结构发生显著改变,使锂离子电导率达到3.41 × 10−3 S/cm,相较于未掺杂LATP(1.83 × 10−5 S/cm)提升了近三倍,这一提升归因于离子传导路径的拓宽。综上所述,在LATP基固态电解质中引入合适的二价阳离子是一种有效提升其性能的策略,具有广泛的应用前景。

English Abstract

Solid-state electrolytes (SSEs) represent a promising future power solution for electric vehicles (EVs) and electronic devices, owing to their improved safety characteristics, high energy density, and non-flammable properties. The NASICON-based Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 —LATP structure is leading the way among oxide-based electrolytes, showcasing excellent Li-ion conductivity and stability in air. However, the development of high-performing oxide-based electrolytes poses challenges owing to their naturally rigid and fragile characteristics, which hinder the formation of an ideal interface between the cathode and anode. The M1–M2 voids situated between the TiO 6 octahedra and PO 4 tetrahedra in a LATP-based solid electrolyte serve as a primary pathway for lithium-ion transport, which can be enhanced for increased conductivity through doping. This study investigates the introduction of divalent ions into the Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 -based electrolyte, widening the ion-conduction pathway thereby boosting ion conductivity. Creating doped Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 samples is performed via quenching method with melting before transforming into glass, followed by grinding, uniaxial compression molding, and sintering, after which they undergo analysis through scanning electron microscopy (SEM), X-ray diffraction (XRD), as well as impedance resistance measurements. The electrochemical evaluation indicated that the divalent incorporated LATP electrolytes displayed better structural behavior and consistent high ionic conductivity performance at low operating temperatures ranging 373–773 K when compared to LATP. This groundbreaking research underscores the potential of hybrid solid electrolytes that integrate Mg-doped LATP as a promising candidate for practical solid-state lithium batteries. The thermal treatment leads to the formation of LiTi 2 (PO 4 ) 3 , crystallizing to produce an electrolyte whose lattice parameter values are influenced by the type and amount of dopant ion, with each divalent ion inducing different distortions in the lattice and M1–M2 bottleneck structure. Notably, doping resulted in a structural change that boosted Li-ion conductivity to 3.41 × 10 −3 S/cm at a 3 mol% magnesium ion concentration, with the threefold increase in conductivity compared to LATP (1.83 × 10 −5 S/cm) attributable to the widening of the ion-conduction path. In summary, doping an LATP-based solid electrolyte with an appropriate divalent cation presents a promising method for enhancing performance, with numerous potential applications.
S

SunView 深度解读

该LATP固态电解质掺杂技术对阳光电源储能及充电桩产品具有重要价值。Mg掺杂使离子电导率提升186倍(3.41×10⁻³ S/cm),可显著改善ST系列储能PCS的电池安全性与能量密度,降低热管理需求。固态电解质的非易燃特性契合PowerTitan大型储能系统的本质安全设计理念。该技术可应用于电动汽车充电站的储能缓冲单元,提升充电桩系统的温度适应性(373-773K)与循环寿命,为阳光电源布局下一代固态电池储能系统提供技术储备,与现有SiC功率器件形成协同优化方案。