← 返回
基于多模态模型的分布式光伏电站多步功率预测方法
Multi-step power forecasting method for distributed photovoltaic (PV) stations based on multimodal model
| 作者 | Siyuan Fan · Hua Genga · Hengqi Zhang |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 298 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A three-stage hybrid data reconstruction method is proposed. |
语言:
中文摘要
我们开发了一种融合视觉与物理信息的多模态光伏发电功率预测方法,以解决传统预测方法在应对光伏面板状态变化方面的不足。利用监测设备获取的时间序列图像来观测光伏状态随时间的变化情况,并采用皮尔逊相关系数评估气象与环境因素同光伏功率之间的关系。提出了一种三阶段混合数据重构方法,以解决光伏系统中数据缺失、噪声较高以及时间戳不同步等问题。采用卷积特征提取网络分析光伏面板遮挡对发电效率的影响。引入一种可学习权重的交叉注意力特征融合机制,以克服单一数据融合策略在捕捉复杂相关性方面的局限性。实验结果表明,所提出的方法在单步预测中优于其他七种方法,实现了最低的平均绝对误差(1.53)。在多步预测中,该模型的均方误差改善率平均比基准方法高出45.40%。
English Abstract
Abstract We developed a multimodal photovoltaic (PV) power forecasting method that integrates visual and physical information. It addresses the shortcomings of traditional forecasting methods in handling changes in the state of PV panels . Time-series images obtained by monitoring equipment were used to observe changes in PV states over time. The Pearson correlation coefficient was used to assess the relationship between meteorological and environmental factors and PV power. A three-stage hybrid data reconstruction method was proposed to solve the problems of missing data, high noise, and synchronization of timestamps in the PV system . A convolutional feature extraction network was used to analyze the impact of PV panel obstruction on power generation efficiency . A novel learnable weight cross-attention feature fusion was incorporated to overcome the limitation of a single data fusion strategy to capture complex correlations. The experimental results demonstrated that the proposed method outperformed seven other methods for single-step forecasting, achieving the lowest mean absolute error of 1.53. The mean square error improvement of the model for multi-step forecasting was, on average, 45.40% higher than that of the baseline methods.
S
SunView 深度解读
该多模态光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过融合监控图像与物理数据的三阶段混合重建方法,可显著提升SG系列逆变器的MPPT优化精度,特别是在组件遮挡场景下。多步预测能力(MSE提升45.40%)可增强ST系列储能变流器的充放电策略优化,实现更精准的削峰填谷。卷积特征提取网络可集成至PowerTitan系统的预测性维护模块,提前识别组件异常状态,降低运维成本,提升分布式光储电站整体发电效率。