← 返回
光伏发电技术 SiC器件 GaN器件 ★ 5.0

基于烷基-硅基苯并二噻吩的空穴传输材料的量子设计

Quantum designing of alkyl-silyl benzodithiophene-based hole transport materials for organic and perovskite solar cells

作者 Mahneema Murtaz · Umar Mukhtar · Nabeeha Gula · Meznah M.Alanazi · Saleem Iqbal · Javed Iqbal
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 302 卷
技术分类 光伏发电技术
技术标签 SiC器件 GaN器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 空穴传输材料 预筛选 苯并二噻吩 光伏 计算模拟
语言:

中文摘要

摘要 面向有机太阳能电池(OSCs)和钙钛矿太阳能电池(PSCs)的空穴传输材料(HTMs)的理性发现,得益于在合成前通过预筛选将分子结构与能级排列及本征传输性能相关联。本研究报道了对五种基于苯并二噻吩(BDT)的HTMs(BDTP1–BDTP5)进行的计算预筛选,这些材料是通过对已报道的BDTP骨架进行桥接单元工程改造而获得的,适用于可行的光伏应用。通过DFT/TD-DFT模拟,对所设计的HTMs进行了全面的分子表征,以研究其结构、电子、光物理以及电荷传输性质。计算结果表明,该分子设计策略可将最高占据分子轨道(HOMO)能级调节至–5.953至–5.430 eV之间,最低未占据分子轨道(LUMO)能级调节至–3.740至–3.081 eV之间,保持LUMO能级显著高于典型钙钛矿导带最大值,并可通过受体选择实现HOMO相对于代表性价带最大值的合理匹配。带隙顺序为BDTP5(1.69 eV)< BDTP4(1.89 eV)< BDTP1(2.17 eV)< BDTP2(2.35 eV)< BDTP(2.45 eV)< BDTP3(2.52 eV)。在氯仿溶剂中,BDTP4和BDTP5表现出强烈的红移吸收带,最大吸收波长分别达到824 nm和899 nm,且激子结合能降低(分别为0.4207 eV和0.3282 eV),这与前线分子轨道(FMO)和跃迁偶极矩(TDM)分析中观察到的主链跨度HOMO离域现象一致。传输参数分析显示,新型HTMs具有较低的空穴重组能,相应的空穴转移速率高达4.85 × 10^12 s^−1,优于BDTP参考材料,并在统一模型下可与Spiro-OMeTAD基准材料相媲美。总体而言,BDTP4和BDTP5在一个单一且可合成模块化的分子骨架内,协同优化了能级匹配、光学响应以及本征空穴传输能力,成为最具前景的HTMs。作为一项DFT/TD-DFT预筛选研究,这些结果为未来的实验合成与器件测试优先确定了目标分子。

English Abstract

Abstract Rational discovery of hole‐transport materials (HTMs) for OSCs/PSCs benefits from prescreening that links molecular structure to energy alignment and intrinsic transport before synthesis. This study reports a computational prescreening of five benzodithiophene (BDT)-based HTMs, BDTP1–BDTP5, obtained by bridging-unit engineering of a reported BDTP scaffold for viable photovoltaics. Comprehensive molecular characterization of the designed HTMs was achieved through DFT/TD-DFT simulations to investigate their structural, electronic, photophysical, and charge transport properties. Computational results show that the molecular design strategy tunes highest occupied molecular orbitals (HOMO) from –5.953 to –5.430 eV and lowest unoccupied molecular orbitals (LUMO) from –3.740 to –3.081 eV, maintaining LUMOs well above typical perovskite conduction band maxima and enabling HOMO placement relative to representative valence band maxima by acceptor choice. Band gaps follow BDTP5 (1.69 eV) < BDTP4 (1.89 eV) < BDTP1 (2.17 eV) < BDTP2 (2.35 eV) < BDTP (2.45 eV) < BDTP3 (2.52 eV). In chloroform solvent, BDTP4/BDTP5 exhibit strong, red-shifted bands absorption maxima at 824/899 nm and reduced lower exciton binding energy (0.4207/0.3282 eV), consistent with backbone-spanning HOMO delocalization seen in FMO/TDM analyses. Transport descriptors identify low hole reorganization energy for the new HTMs and corresponding enhanced hole transfer rate of up to 4.85 × 10 12 s −1 , outperforming the BDTP reference and comparing favorably with the Spiro-OMeTAD benchmark under a uniform model. Overall, BDTP4 and BDTP5 emerge as the most promising HTMs by jointly optimizing energy-level alignment, optical response, and intrinsic hole-transport propensity within a single, synthetically modular motif. As a DFT/TD-DFT pre-screen, these results prioritize targets for future experimental synthesis and device testing.
S

SunView 深度解读

该钙钛矿/有机太阳能电池空穴传输材料研究对阳光电源光伏技术具有前瞻价值。新型HTMs材料的能级优化(HOMO -5.43至-5.95eV)和低激子结合能特性,可提升钙钛矿组件光电转换效率,为SG系列逆变器提供更高效率的前端电池技术支撑。其载流子传输速率达4.85×10¹²s⁻¹,与阳光在SiC/GaN器件上追求的低损耗、快速开关特性理念一致。材料分子设计的计算预筛选方法,可借鉴应用于功率半导体材料优化,加速ST储能系统和1500V高压光伏系统的器件选型与拓扑创新。