← 返回
基于数值天气数据驱动的光伏数字孪生传感器数据生成:一种混合模型方法
Numerical Weather Data-Driven Sensor Data Generation for PV Digital Twins: A Hybrid Model Approach
| 作者 | Jooseung Lee · Jimyung Kang · Sangwoo Son · Hui-Myoung Oh |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 SiC器件 GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源发电系统 光伏系统 数字孪生系统 传感器数据生成模型 数据驱动模型 |
语言:
中文摘要
随着全球对环保政策的重视,可再生能源系统广泛应用,光伏(PV)系统因其易管理性备受青睐,而数字孪生(DT)技术则用于实现实时监控与管理。本文提出一种基于数值天气预报(NWP)数据的新型传感器数据生成模型,结合LSTM与GAN构建混合数据驱动框架,并引入融合Transformer的TransTimeGAN以捕捉15分钟级变化特征。模型在自研PV DT系统数据上训练验证,实验结果显示其在均方误差(7.84e-3)、动态时间规整(1.3769)、KL散度(0.9591)和标准差相似性(0.9671)等指标上表现优异,显著优于现有方法。
English Abstract
With the growing global emphasis on environmental protection policies, renewable energy generation systems have become widely adopted. In particular, photovoltaic (PV) systems have gained popularity for their ease of management, while digital twin (DT) systems are being developed to enable real-time monitoring and management of the systems. Furthermore, the DT systems simulate the operations of the physical systems in real-time based on the data collected from various sensors. To this end, a novel sensor data generation model based on numerical weather prediction (NWP) data is proposed to forecast the future operations of PV systems using DT systems. The proposed model utilizes a hybrid data-driven model structure combining supervised learning-based long short-term memory (LSTM) and unsupervised learning-based generative adversarial network (GAN) to enhance both average and variance accuracy. Specifically, TransTimeGAN is proposed, which combines TimeGAN with Transformer to effectively capture 15-min variability. For practical applicability, the proposed model is trained and validated using data from a self-developed PV DT system. To evaluate the effectiveness of the proposed model, the similarities between normalized real and generated data are compared using a range of error metrics and statistical metrics. For representative error metrics, the proposed model achieves a mean squared error (MSE) of 7.84e-3 and a dynamic time warping (DTW) score of 1.3769. Regarding representative statistical metrics, the model achieves a Kullback-Leibler divergence (KLD, max-normalized) of 0.9591 and a standard deviation similarity (SDS) of 0.9671. The experimental results demonstrate that the proposed model delivers superior performance in generating data compared with various data-driven models across a range of numerical metrics and visual assessments.
S
SunView 深度解读
该混合数字孪生技术对阳光电源iSolarCloud智能运维平台及SG系列光伏逆变器具有重要应用价值。TransTimeGAN模型可基于NWP数据生成15分钟级高精度传感器数据,弥补实际电站传感器缺失或故障场景,为MPPT算法优化提供完整数据支撑。在PowerTitan储能系统中,该技术可实现光储协同的预测性维护,通过数字孪生提前模拟辐照度、温度变化对发电曲线的影响,优化储能充放电策略。LSTM-GAN混合架构的低MSE特性(7.84e-3)可提升iSolarCloud平台的故障诊断准确率,减少因数据缺失导致的误报。建议将该模型集成至智能运维系统,结合1500V系统的大规模电站监控需求,实现虚拟传感器网络构建,降低硬件成本同时提升运维智能化水平。