← 返回
用于物理不可克隆功能的具有界面粗糙度的共振隧穿二极管
Interface roughness in Resonant Tunnelling Diodes for physically unclonable functions
| 作者 | Pranav Achary · Vihar Georgie |
| 期刊 | Solid-State Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 228 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Interface Roughness in Resonant Tunneling Diodes reduces current |
语言:
中文摘要
摘要 本文研究了具有界面粗糙度(IR)的共振隧穿二极管(RTD)作为物理不可克隆功能(PUF)组件的潜力。将具有IR的RTD与无IR的“平滑”器件进行比较,结果表明,共振峰电流与谷电流Ir/Iv之间的峰值-谷值电流比(PVCR)以及电流均有所降低。此外,IR导致电流-电压(IV)特性中负微分电阻区域(NDR)向更高偏压方向移动。这种扰动源于IR实际上增厚了势垒,从而压缩了量子阱(QW)宽度,并提高了量子阱的基态能量。针对由25个随机生成的具有IR的RTD组成的批次,改变其相关长度LC和粗糙度起伏ΔRMS的结果显示,增大ΔRMS会降低平均PVCR,并增加共振峰电压Vr和电流Ir的标准偏差。由150个LC为7.5 nm、ΔRMS为0.3 nm的RTD构成的系统实现了1.275比特的最小熵,表明理想情况下100个RTD可组成一个编码127比特信息的PUF。
English Abstract
Abstract Resonant Tunnelling Diodes with Interface Roughness (IR) were investigated for their potential as components of Physically Uncloneable Functions (PUFs). A comparison of an RTD with IR, against a ‘smooth’ device without IR, showed a reduction in current and Peak to Valley Current Ratio (PVCR) between the resonant peak and valley currents I r / I v . Furthermore, IR resulted in a perturbation of the Negative Differential Region (NDR) of the IV characteristic to higher bias. This perturbation was due to IR effectively thickening barriers and thereby narrowing the Quantum Well (QW) and leading to a higher ground state QW energy. Variation of correlation length L C and roughness asperity Δ R M S for batches of 25 randomly generated RTDs with IR showed that increasing Δ R M S decreased mean PVCR and increased the standard deviation of the resonant peak voltage V r and current I r . 150 RTDs with an L C of 7.5 nm and Δ R M S of 0.3 nm resulted in a min-entropy of 1.275 bits, showing that 100 RTDs could idealistically compose a PUF encoding 127 bits.
S
SunView 深度解读
该共振隧穿二极管界面粗糙度研究对阳光电源SiC/GaN功率器件开发具有启示意义。文中界面粗糙度导致的势垒增厚、量子阱窄化现象,类似于SiC器件中界面缺陷对载流子输运的影响。其峰谷电流比(PVCR)退化机理可指导ST系列储能变流器和SG逆变器中SiC MOSFET的界面质量控制。虽然PUF物理不可克隆功能属信息安全领域,但其对界面微观形貌的精确表征方法,可应用于优化三电平拓扑中SiC器件的栅氧界面工艺,降低开关损耗,提升PowerTitan储能系统效率。建议将纳米级界面粗糙度分析技术引入功率半导体质量检测体系。