← 返回
通过结构优化和跨导建模提升AlGaN/GaN高电子迁移率晶体管中的载流子输运性能
Enhancing carrier transport in AlGaN/GaN HEMTs through structural optimization and transconductance modeling
| 作者 | Hyo-Joung Kima · Walid Amira · Surajit Chakraborty · Ju-Won Shina · Ki-Young Shina · Hyuk-Min Kwonb · Tae-Woo Kimc |
| 期刊 | Solid-State Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 230 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | GaN器件 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Transconductance modeling was performed on AlGaN/GaN HEMTs. |
语言:
中文摘要
摘要 在基于GaN的高电子迁移率晶体管(HEMTs)中,二维电子气(2DEG)的载流子输运特性,特别是饱和速度(υ_sat)和有效迁移率(μ_n_eff),是决定器件性能的关键因素。为了提升这些特性,我们进行了结构优化,包括降低Al_xGa_1-xN势垒层中的Al组分以及引入AlGaN背势垒结构。鉴于传统提取方法的局限性,我们采用跨导建模技术以更准确地提取有效迁移率和饱和速度的数值。引入AlGaN背势垒后,有效迁移率提升至748 cm²/V·s。此外,降低Al_xGa_1-xN表面势垒层中的Al组分使有效迁移率达到484 cm²/V·s。这些结果为AlGaN/GaN HEMTs外延结构的设计提供了有价值的指导,有助于在未来应用中实现更优异的器件性能。
English Abstract
Abstract In GaN-based High-Electron Mobility Transistors (HEMTs), the carrier transport properties of the 2-Dimensional Electron Gas (2DEG), specifically the saturation velocity ( υ sat ) and effective mobility ( μ n_eff ,), are critical determinants of device performance. To enhance these properties, we conducted structural optimizations, which included reducing the Al mole fraction in the Al x Ga 1-x N barrier and introducing an AlGaN back barrier. Recognizing the limitations of traditional extraction techniques, we employed transconductance modeling to accurately extract effective mobility and saturation velocity values. The implementation of the AlGaN back barrier resulted in an effective mobility enhancement to 748 cm 2 /V·s. Additionally, reducing the Al mole fraction in the Al x Ga 1-x N top barrier led to an effective mobility improvement of 484 cm 2 /V·s. These findings provide valuable insights into the design of epitaxial structures for AlGaN/GaN HEMTs aimed at achieving superior performance in future applications.
S
SunView 深度解读
该AlGaN/GaN HEMT载流子输运优化技术对阳光电源电动汽车驱动系统及充电桩产品具有重要价值。通过降低AlGaN势垒Al组分和引入背势垒结构,有效迁移率提升至748 cm²/V·s,可显著改善GaN功率器件的开关特性和导通损耗。该跨导建模提取方法为阳光SG系列逆变器和ST储能变流器中GaN器件的精确参数表征提供新思路,有助于优化三电平拓扑设计,提升系统效率和功率密度,推动1500V高压系统和大功率充电站的GaN器件应用突破。