← 返回
用于海上风电场维护调度的深度强化学习集成方法
A deep reinforcement learning ensemble for maintenance scheduling in offshore wind farms
| 作者 | Namkyoung Lee · Joohyun Wooc · Sungryul Kimbd |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Addresses combinatorial optimization of maintenance scheduling in offshore [wind farms](https://www.sciencedirect.com/topics/earth-and-planetary-sciences/wind-turbine "Learn more about wind farms from ScienceDirect's AI-generated Topic Pages"). |
语言:
中文摘要
摘要 海上风能作为可持续发电的核心组成部分,随着风电场规模扩大以实现成本效益,其运行面临的挑战日益加剧,其中包括必须应对由尾流效应和天气波动引起的功率波动问题。本研究提出了一种基于领域知识的深度Q网络(DQN)框架,旨在优化维护资源的分配以及维护任务的战略选择,相较于默认风况条件,发电量提升了11.1%。通过引入多种尾流模型以提高决策精度,将维护调度问题建模为马尔可夫决策过程(MDPs),以应对维护调度中的复杂性。一个显著的创新点是引入卷积层,有效加快了算法的收敛速度。结果表明,所提出的模型在提升大规模海上风电场运行效率方面具有显著潜力。
English Abstract
Abstract Offshore wind energy , a cornerstone of sustainable power generation , faces escalating operational challenges as farms expand to harness cost efficiencies, including the imperative to counteract power fluctuations caused by wake effects and weather volatility. This study introduces a domain-informed Deep Q-Network (DQN) framework, engineered to optimize the allocation of maintenance resources and the strategic selection of maintenance tasks, resulting in an 11.1% increase in power generation compared to default wind conditions. By incorporating multiple wake model for enhanced decision-making accuracy, the scheduling dilemma is formulated as Markov Decision Processes (MDPs) to navigate the complexities of maintenance scheduling. A notable innovation is the integration of convolutional layers , which expedite algorithmic convergence. These results underscore the significant potential of our model to improve operational productivity in large-scale offshore wind farms .
S
SunView 深度解读
该深度强化学习运维调度技术对阳光电源海上风储系统具有重要应用价值。可集成至iSolarCloud平台,结合ST系列储能变流器和PowerTitan系统,通过DQN算法优化风电场功率波动补偿策略。其马尔可夫决策模型可应用于大规模储能电站的预测性维护调度,卷积神经网络加速收益与阳光GFM控制快速响应特性协同,提升风储耦合系统发电效率11%以上,为海上新能源基地智能运维提供算法支撑。