← 返回
储能系统技术 深度学习 ★ 5.0

利用聚光太阳能热能储存优化固体氧化物电解池:一种混合深度学习方法

Optimization of solid oxide electrolysis cells using concentrated solar-thermal energy storage: A hybrid deep learning approach

作者 Hongwei Liua1 · Wei Shuaia1 · Zhen Yao · Jin Xuan · Meng Ni · Gang Xiao · Haoran Xu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 储能系统技术
技术标签 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Innovative use of solar thermal energy in SOECs.
语言:

中文摘要

摘要 固体氧化物电解池(SOEC)是一种将CO2和H2O转化为合成气的前沿技术,具有显著的经济与环境效益。然而,该过程需要大量的高温热量输入,传统上依赖电能供给。本研究提出一种创新方法,利用聚光太阳辐射作为SOEC的可再生热源,并通过集成热能储存(TES)系统来应对太阳辐射固有的波动性挑战。我们构建了一种混合模型,将多物理场仿真与深度学习算法相结合,能够在实时直法向辐照度条件下快速优化电解过程。研究结果表明,在系统架构中引入TES后,SOEC入口处的温度变化率显著降低了53%,从而确保了运行的稳定性与效率。此外,通过精细调节容量参数,我们开发出一种控制策略,实现了效率与安全性能之间的协调统一。本系统的鲁棒性体现在其对阶跃变化的强适应能力,温度波动减少了75%。本研究提出了一种开创性的SOEC系统实时优化与控制方法,充分利用TES的优势,推动可持续能源转换在更高可靠性与经济可行性下的发展,即使在动态运行条件下也能实现精确且快速的预测能力。

English Abstract

Abstract The Solid Oxide Electrolysis Cell (SOEC) represents a cutting-edge solution for the conversion of CO 2 and H 2 O into syngas , offering significant economic and environmental benefits. However, the process requires substantial high-temperature heat inputs, traditionally supplied by electricity. This study introduces a novel approach leveraging concentrated solar radiation as a renewable heat source for SOEC, addressing the challenge of its inherent fluctuations through the integration of Thermal Energy Storage (TES) systems. We propose a hybrid model that combines multi-physics simulation with a deep learning algorithm , enabling rapid optimization of the electrolysis process under real-time direct normal irradiance conditions. Our findings demonstrate that the inclusion of TES within the system architecture results in a remarkable 53 % reduction in temperature variation rate at the SOEC inlet, ensuring operational stability and efficiency. Furthermore, by fine-tuning capacity parameters, we have developed a control strategy that harmonizes efficiency with safety performance. The robustness of our system is underscored by its resilience to step changes, achieving a 75 % reduction in temperature fluctuations. This research contributes a pioneering method for the real-time optimization and control of SOEC systems, harnessing the power of TES to drive sustainable energy conversion with enhanced reliability and economic viability, facilitating precise and swift predictive capabilities even under dynamic operating conditions.
S

SunView 深度解读

该研究将光热储能与固体氧化物电解耦合的深度学习优化方法,对阳光电源ST系列储能变流器及PowerTitan系统具有重要借鉴价值。其热能存储系统可降低53%温度波动率的控制策略,可应用于我司储能系统的热管理优化;混合多物理场仿真与深度学习算法的实时优化框架,可增强iSolarCloud平台的预测性维护能力,特别是在光伏-储能-制氢耦合场景中,提升系统动态响应性能和安全裕度,为构建新能源制氢一体化解决方案提供技术路径。