找到 5 条结果 · IEEE Transactions on Sustainable Energy

排序:
风电变流技术 储能系统 模型预测控制MPC 多物理场耦合 ★ 5.0

考虑尾流延迟特性的海上风电场LPV模型预测控制

LPV Model Predictive Control for Offshore Wind Farms Considering Wake Delay Characteristics

Yang Liu · Jiahao Lin · Ling-ling Huang · Cheng Hua 等6人 · IEEE Transactions on Sustainable Energy · 2025年7月

大规模海上风电场中显著的尾流效应要求充分考虑其延迟特性,而该特性在控制中常被忽视。针对尾流动态演化与风机控制模型参数变化之间的耦合问题,本文提出一种考虑尾流延迟特性的线性参数可变(LPV)模型预测控制方法。通过构建准稳态尾流模型,将尾流延迟特性融入风电场LPV模型,并结合两阶段降维策略简化计算,协同优化疲劳损伤均衡与发电量提升。16台风机的仿真结果表明,所建模型能准确描述尾流延迟的空间分布,所提控制方法在风速风向动态变化下有效捕捉机组间风速延迟与波动特性,显著提高发电量并降低疲劳应力,且相比静态...

解读: 该研究的尾流延迟LPV模型预测控制技术对阳光电源的储能和风电产品具有重要参考价值。首先,其动态建模方法可优化ST系列储能变流器的功率预测算法,提升大型储能电站的调度效率。其次,文中的疲劳损伤均衡策略可应用于PowerTitan系统的电池管理,延长储能设备寿命。此外,该控制方法在处理多设备耦合方面的创...

光伏发电技术 储能系统 深度学习 强化学习 ★ 5.0

基于深度强化学习的多模态对抗攻击下鲁棒光伏功率预测

Robust Photovoltaic Power Forecasting Against Multi-Modal Adversarial Attack via Deep Reinforcement Learning

Jingxuan Liu · Haixiang Zang · Lilin Cheng · Tao Ding 等6人 · IEEE Transactions on Sustainable Energy · 2025年3月

随着深度学习与多模态外部数据在光伏功率预测中的广泛应用,网络攻击尤其是虚假数据注入可能严重误导预测结果,威胁电网安全经济运行。现有研究尚未充分关注多模态协同攻击的影响,且难以应对隐蔽性攻击。为此,本文提出一种新型鲁棒预测框架,通过构建充分利用多模态相关性的对抗攻击模拟潜在虚假数据注入,并采用深度确定性策略梯度算法动态调整各模态权重,以抑制数据污染并保留有效信息。 actor与环境模块预训练以提升收敛性与泛化能力。实验表明,在输入扰动低于5%时,所提方法均绝对误差仅增加0.053 kW,显著优于无...

解读: 该多模态鲁棒预测技术对阳光电源iSolarCloud云平台和PowerTitan储能系统具有重要应用价值。针对光伏电站面临的网络安全威胁,可将深度强化学习的动态权重调整机制集成到智能运维平台中,增强气象数据、历史功率等多源信息融合的抗攻击能力。对于ST系列储能变流器的功率预测模块,该方法可有效抵御虚...

光伏发电技术 储能系统 MPPT 机器学习 ★ 5.0

一种基于机器学习的光伏系统在复杂局部遮阴条件下的全局最大功率点跟踪技术

A Machine Learning-Based Global Maximum Power Point Tracking Technique for a Photovoltaic Generation System Under Complicated Partially Shaded Conditions

Yi-Hua Liu · Yu-Shan Cheng · Yu-Chih Huang · IEEE Transactions on Sustainable Energy · 2024年12月

在局部遮阴条件下,光伏系统输出功率与电压关系呈多峰特性,导致全局最大功率点(GMPP)追踪困难。本文提出一种基于机器学习的两阶段GMPPT方法:第一阶段采用回归树预测GMPP大致位置,第二阶段利用α-扰动观察法精确捕获GMPP。通过建立仿真平台生成训练数据,优化并集成回归树模型。在252种遮阴模式下,平均跟踪损耗为2.13 W,平均响应时间0.11秒,准确识别出244种情况下的GMPP区间。实验结果表明,该方法在追踪精度和速度上均优于五种先进方法。

解读: 该机器学习GMPPT技术对阳光电源SG系列光伏逆变器的MPPT算法优化具有重要应用价值。当前SG逆变器在复杂遮阴场景下的多峰功率曲线处理仍依赖传统扰动观察法,易陷入局部最优。该研究提出的回归树+α-扰动观察两阶段方法,可将平均响应时间缩短至0.11秒,跟踪损耗降至2.13W,显著优于现有方案。建议将...

储能系统技术 储能系统 深度学习 强化学习 ★ 5.0

受脑启发的协作式自动发电控制与大规模电动汽车集成

Brain-Inspired Collaborative Automatic Generation Control With Large-Scale Electric Vehicles Integration

Zhihong Liu · Lei Xi · Yue Quan · Chen Cheng 等5人 · IEEE Transactions on Sustainable Energy · 2024年10月

分布式能源、负荷与储能设备具有间歇性和强随机性,接入电网后易引发显著的频率波动。现有基于多智能体协同神经网络的控制算法易遭遇灾难性遗忘问题,难以在强随机扰动下实现最优控制。本文提出一种基于正交权重修正策略网络更新的近端受脑启发策略优化(PBPO)算法,赋予网络类脑上下文感知能力,从而加速多区域协同控制的收敛速度,有效抑制电网严重随机扰动引起的频率波动。通过大规模电动汽车接入场景下的两个负荷频率控制模型仿真验证,所提PBPO算法在收敛速度、频率稳定性及控制性能方面均优于多种强化学习算法。

解读: 该脑启发协同控制技术对阳光电源储能与充电桩产品具有重要应用价值。针对PowerTitan大型储能系统参与电网AGC调频场景,PBPO算法的抗遗忘特性可显著提升多储能站点协同响应能力,解决ST系列储能变流器在强随机扰动下的频率稳定问题。对于新能源汽车业务,该算法可优化大规模充电桩V2G协同控制策略,实...

风电变流技术 储能系统 ★ 5.0

基于直驱PMSG风力发电机系统恢复过程中的快速功率调节方法

Fast Power Regulation Method During System Restoration for D-PMSG-Based Wind Turbines

Guohang Huang · Sheng Huang · Juan Wei · Hesong Cui 等6人 · IEEE Transactions on Sustainable Energy · 2024年9月

桨距动作速度是限制风力发电机功率爬坡速率的主要因素之一。通过在风轮、叶片和发电机转子中存储动能,可在减少桨距调节的情况下实现更快的功率调控,适用于 blackout 后系统恢复等需快速注入功率的场景。本文提出一种适用于直驱永磁同步风力发电机(D-PMSG)的新型快速功率调节方法,提前完成耗时的桨距角减小过程,并在外部系统恢复前储备动能,从而在系统恢复初期即实现最大功率输出。分析了D-PMSG风机的可行运行边界及其对外部系统的最大功率支撑能力,避免高动能储备引起的变流器调制问题。该方法可显著提升功...

解读: 该快速功率调节技术对阳光电源储能和风电产品线具有重要参考价值。通过动能储备和桨距预调节实现的快速功率响应机制,可应用于ST系列储能变流器的黑启动和系统恢复功能优化。其动能管理思路可借鉴到PowerTitan储能系统的功率调节策略中,提升大规模储能电站的一次调频性能。该方法对变流器功率边界的分析也可用...