找到 5 条结果 · IEEE Transactions on Power Systems

排序:
储能系统技术 储能系统 SiC器件 ★ 5.0

一种用于消除对称性的紧致机组聚合模型

A Tight Unit Aggregation for Unit Commitment to Eliminate Symmetry

Biyuan Zhang · Tao Ding · Yang Xiao · IEEE Transactions on Power Systems · 2025年6月

机组组合(UC)通常被建模为混合整数线性规划问题,采用经典的分支定界与分支切割算法求解。然而,UC问题中的对称性导致大量无效搜索,显著增加计算负担。本文提出一种具有紧致约束的机组聚合模型,通过对最大聚合出力轨迹施加严格限制,有效消除对称性,在保持最优性的同时显著降低计算时间。数值实验验证了该方法在计算效率方面的有效性。

解读: 该紧致机组聚合模型对阳光电源PowerTitan大型储能系统和iSolarCloud智能运维平台具有重要应用价值。在多机组储能电站调度场景中,同型号ST储能变流器的对称性导致优化算法产生大量冗余搜索,该方法通过聚合建模可显著提升实时调度效率。具体可应用于:1)多MW级储能集群的经济调度优化,降低EM...

风电变流技术 储能系统 ★ 5.0

考虑混合不确定性风险量化的发电机组维修调度方法

Generation Maintenance Scheduling for Power Systems Considering the Risk Quantification of Hybrid Uncertainty

Xiao Yang · Yong Zhao · Yuanzheng Li · Cheng Huang 等5人 · IEEE Transactions on Power Systems · 2025年1月

准确量化不确定性引发的风险是制定电力系统发电维修调度(GMS)的关键基础。然而,风电和负荷等不确定变量的概率分布函数难以精确建模或未知,导致其经济风险难以度量,GMS难以合理制定。为此,本文考虑风电与负荷的混合不确定性,提出一种基于区间-概率最差条件风险价值(IP-WCVaR)的GMS方法。首先构建IP-WCVaR风险度量模型,并通过典型概率修正场景推导其解析数学表达式;进而建立基于IP-WCVaR的正负旋转备用模型并嵌入GMS框架,提升系统韧性;最终将风险规避型GMS建模为上下界优化问题,并基...

解读: 该研究提出的混合不确定性风险量化方法对阳光电源的储能和光伏产品线具有重要应用价值。特别是在PowerTitan大型储能系统和SG系列光伏逆变器的调度优化中,可将IP-WCVaR风险度量模型应用于系统维护调度,提升设备可靠性。通过正负旋转备用模型可优化iSolarCloud平台的预测性维护策略,实现储...

储能系统技术 储能系统 强化学习 ★ 5.0

高渗透率可再生能源电力系统实时调度:一种专家知识与强化学习混合方法

Real-Time Scheduling of High-Penetrated Renewable Power Systems: An Expert Knowledge and Reinforcement Learning Hybrid Approach

Sijun Du · Tao Ding · Yang Xiao · Jingyu Wan 等6人 · IEEE Transactions on Power Systems · 2024年7月

现代电力系统正向低碳可持续转型,可再生能源渗透率的提升及其不确定性给系统调度带来严峻挑战,灵活元件的引入进一步增加了调度复杂性。为此,本文提出一种融合专家知识与强化学习(RL)的混合实时调度方法。首先建立包含柔性负荷与储能的高渗透率可再生能源系统实时调度模型,并转化为马尔可夫决策过程。通过引入专家知识作为系统与RL智能体之间的中介,利用RL算法优化的机组控制序列进行调度决策。基于SG 126节点系统的算例验证了所提方法在保障系统安全稳定运行的同时,显著提升可再生能源消纳能力的有效性与潜力。

解读: 该混合调度方法对阳光电源PowerTitan储能系统和iSolarCloud平台具有重要应用价值。强化学习与专家知识融合的实时调度策略可直接应用于ST系列储能变流器的智能控制算法,优化充放电决策以应对高比例光伏接入的不确定性。该方法可集成至iSolarCloud云平台,实现多站点储能系统协同调度,提...

系统并网技术 可靠性分析 深度学习 ★ 4.0

性能保证的深度学习在动态智能电网网络攻击检测中的应用

Performance Guaranteed Deep Learning for Detection of Cyber-Attacks in Dynamic Smart Grids

Mostafa Mohammadpourfard · Chenhan Xiao · Yang Weng · IEEE Transactions on Power Systems · 2025年6月

虚假数据注入攻击(FDIA)对电力系统的可靠性构成了严重威胁,尤其是在诸如线路故障等动态运行条件下,这些情况会导致数据分布发生变化并出现概念漂移。传统的监督式方法依赖于带标签的数据集,这成本高昂且不适用于实时应用,并且在没有大量重新训练的情况下,往往无法适应新的攻击向量和运行变化。为应对这些挑战,我们设计了深度对比变分网络(DCVN),这是一个无监督学习框架,旨在无需带标签的数据或对网络拓扑进行假设的情况下检测FDIA。DCVN框架首先使用深度信念网络(DBN)从原始电力系统数据中进行稳健的特征...

解读: 该深度学习检测方法对阳光电源的储能和光伏产品安全性提升具有重要价值。可直接应用于ST储能系统和SG光伏逆变器的网络安全防护,特别是在大型储能电站和光伏电站的动态运行场景中。通过在iSolarCloud平台集成该检测算法,可提升PowerTitan等大型储能系统的运行可靠性,有效防范数据篡改导致的误操...

系统并网技术 ★ 4.0

配电网络中保护隐私的线路断电检测:一种高效且性能无损的方法

Privacy-Preserving Line Outage Detection in Distribution Grids: An Efficient Approach With Uncompromised Performance

Chenhan Xiao · Yizheng Liao · Yang Weng · IEEE Transactions on Power Systems · 2024年6月

近期研究进展表明,利用电压和功率数据等传感器测量值来识别配电网中的线路故障是有效的。然而,这些测量值可能会将电力用户的敏感信息(如家庭居住情况和经济状况)泄露给对手,从而无意中给电力用户带来隐私风险。为保护原始数据不直接暴露给第三方对手,本文提出了一种新颖的分布式数据加密方案。通过研究高斯差分隐私,证明了该加密策略的差分隐私属性,从而验证了其有效性。鉴于原始数据加密可能会影响故障检测的有效性,本文通过研究线路故障前后数据分布之间的库尔贝克 - 莱布勒散度来分析性能下降情况。通过这种分析,我们可以...

解读: 该隐私保护线路断电检测技术对阳光电源的储能和光伏产品线具有重要应用价值。可集成至ST系列储能变流器和SG系列光伏逆变器的控制系统中,通过安全多方计算实现分布式设备间的数据协同分析。这将增强iSolarCloud平台的智能运维能力,在保护用户数据隐私的同时提升故障诊断效率。特别是在大型储能电站和工商业...