← 返回
系统并网技术 可靠性分析 深度学习 ★ 4.0

性能保证的深度学习在动态智能电网网络攻击检测中的应用

Performance Guaranteed Deep Learning for Detection of Cyber-Attacks in Dynamic Smart Grids

作者 Mostafa Mohammadpourfard · Chenhan Xiao · Yang Weng
期刊 IEEE Transactions on Power Systems
出版日期 2025年6月
技术分类 系统并网技术
技术标签 可靠性分析 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 虚假数据注入攻击 电力系统 深度对比变分网络 无监督学习 异常检测
语言:

中文摘要

虚假数据注入攻击(FDIA)对电力系统的可靠性构成了严重威胁,尤其是在诸如线路故障等动态运行条件下,这些情况会导致数据分布发生变化并出现概念漂移。传统的监督式方法依赖于带标签的数据集,这成本高昂且不适用于实时应用,并且在没有大量重新训练的情况下,往往无法适应新的攻击向量和运行变化。为应对这些挑战,我们设计了深度对比变分网络(DCVN),这是一个无监督学习框架,旨在无需带标签的数据或对网络拓扑进行假设的情况下检测FDIA。DCVN框架首先使用深度信念网络(DBN)从原始电力系统数据中进行稳健的特征提取,以无监督的方式捕捉潜在模式。鉴于DBN在不同条件下处理FDIA复杂性方面存在局限性,我们通过将改进的变分自编码器(VAE)与噪声对比估计(NCE)相结合来改进我们的模型。这种结合创造了一种新颖的损失函数,该函数优化了VAE的潜在空间,以增强正常运行与异常情况之间的对比度。NCE组件通过最大化数据表示的可区分性,特别提高了模型对异常情况的敏感性。这种设计使DCVN能够动态地学习稳健特征,不仅通过最小化重构误差,还通过无监督学习增强异常检测能力。我们为我们的方法提供了理论基础,确保在电网的动态环境中具有性能保证。实证结果表明,DCVN模型显著优于传统方法,具有强大的检测能力。

English Abstract

False Data Injection Attacks (FDIAs) pose a critical threat to the reliability of power systems, especially under dynamic operational conditions like line outages that cause data distribution changes and concept drift. Traditional supervised methods depend on labeled datasets, which are costly and impractical for real-time application, and often fail to adapt to new attack vectors and operational changes without extensive retraining. To address these challenges, we design the Deep Contrastive Variational Network (DCVN), an unsupervised learning framework engineered to detect FDIA without requiring labeled data or assumptions about network topology. The DCVN framework starts with a Deep Belief Network (DBN) for robust feature extraction from raw power system data, capturing underlying patterns in an unsupervised manner. Recognizing the limitations of DBNs in managing FDIA complexities under varying conditions, we enhance our model by integrating a modified Variational Autoencoder (VAE) with Noise Contrastive Estimation (NCE). This integration creates a novel loss function that optimizes the latent space of the VAE to enhance the contrast between normal operations and anomalies. The NCE component specifically sharpens the model's sensitivity to anomalies by maximizing the distinguishability of data representations. This design enables the DCVN to dynamically learn robust features, not just by minimizing reconstruction error but by enhancing anomaly detection through unsupervised learning. We provide a theoretical foundation for our method, ensuring performance guarantees in the dynamic environments of power grids. Empirical results demonstrate that the DCVN model significantly surpasses traditional approaches, offering robust detection capabilities.
S

SunView 深度解读

该深度学习检测方法对阳光电源的储能和光伏产品安全性提升具有重要价值。可直接应用于ST储能系统和SG光伏逆变器的网络安全防护,特别是在大型储能电站和光伏电站的动态运行场景中。通过在iSolarCloud平台集成该检测算法,可提升PowerTitan等大型储能系统的运行可靠性,有效防范数据篡改导致的误操作。该方法结合物理模型的特点,也可优化GFM/GFL控制器的异常检测能力,为构建更安全可靠的新能源发电系统提供技术支撑。建议在下一代产品中将此类智能安全特性作为标配功能。