← 返回
系统并网技术 ★ 4.0

配电网络中保护隐私的线路断电检测:一种高效且性能无损的方法

Privacy-Preserving Line Outage Detection in Distribution Grids: An Efficient Approach With Uncompromised Performance

作者 Chenhan Xiao · Yizheng Liao · Yang Weng
期刊 IEEE Transactions on Power Systems
出版日期 2024年6月
技术分类 系统并网技术
相关度评分 ★★★★ 4.0 / 5.0
关键词 配电网 线路故障检测 数据加密 隐私保护 检测性能
语言:

中文摘要

近期研究进展表明,利用电压和功率数据等传感器测量值来识别配电网中的线路故障是有效的。然而,这些测量值可能会将电力用户的敏感信息(如家庭居住情况和经济状况)泄露给对手,从而无意中给电力用户带来隐私风险。为保护原始数据不直接暴露给第三方对手,本文提出了一种新颖的分布式数据加密方案。通过研究高斯差分隐私,证明了该加密策略的差分隐私属性,从而验证了其有效性。鉴于原始数据加密可能会影响故障检测的有效性,本文通过研究线路故障前后数据分布之间的库尔贝克 - 莱布勒散度来分析性能下降情况。通过这种分析,我们可以设计一种能精确逼近最优检测统计量的创新检测统计量,从而进一步减轻性能下降的影响。通过控制该统计量的方差,我们证明了其能够接近最优检测性能。本文使用具有代表性的配电网和实际负荷曲线对所提出的考虑隐私的检测程序进行了评估,涵盖了 17 种不同的故障配置。实证结果证实了该方法的隐私保护特性,并表明其检测性能可与最优基线相媲美。

English Abstract

Recent advancements in research have shown the efficacy of employing sensor measurements, such as voltage and power data, in identifying line outages within distribution grids. However, these measurements inadvertently pose privacy risks to electricity customers by potentially revealing their sensitive information, such as household occupancy and economic status, to adversaries. To safeguard raw data from direct exposure to third-party adversaries, this paper proposes a novel decentralized data encryption scheme. The effectiveness of this encryption strategy is validated via demonstration of its differential privacy attributes by studying the Gaussian differential privacy. Recognizing that the encryption of raw data could affect the efficacy of outage detection, this paper analyzes the performance degradation by examining the Kullback–Leibler divergence between data distributions before and after the line outage. This analysis allows us to further alleviate the performance degradation by designing an innovative detection statistic that accurately approximates the optimal one. Manipulating the variance of this statistic, we demonstrate its ability to approach the optimal detection performance. The proposed privacy-aware detection procedure is evaluated using representative distribution grids and real load profiles, covering 17 distinct outage configurations. Our empirical results confirm the privacy-preserving nature of our approach and show that it achieves comparable detection performance to the optimal baseline.
S

SunView 深度解读

该隐私保护线路断电检测技术对阳光电源的储能和光伏产品线具有重要应用价值。可集成至ST系列储能变流器和SG系列光伏逆变器的控制系统中,通过安全多方计算实现分布式设备间的数据协同分析。这将增强iSolarCloud平台的智能运维能力,在保护用户数据隐私的同时提升故障诊断效率。特别是在大型储能电站和工商业光伏系统中,该技术可优化PowerTitan和1500V系统的断电检测功能,提高系统可靠性。建议将其应用于产品的GFM/GFL控制算法中,实现更智能的并网运行控制。