找到 5 条结果 · IEEE Transactions on Power Systems

排序:
控制与算法 下垂控制 调峰调频 ★ 5.0

超越单调下垂控制:扩展可行控制区域以实现最优频率调节

Beyond Monotonic Droop: Expanding Feasible Control Regions for Optimal Frequency Regulation

Hamad Alduaij · Yang Weng · Haoran Li · IEEE Transactions on Power Systems · 2025年8月

随着基于逆变器的可再生能源资源(IBR)的集成度不断提高,电网正朝着混合发电模式转变。随着系统变得更加复杂,确保最优且安全的控制面临挑战。近期研究表明,如何通过预先选择一类激活函数进行控制来实现有条件的最优控制并确保稳定性。然而,我们证明了该子类激活函数会导致 IBR 的控制策略并非最优。为解决这一问题,我们提出了一种在保持李雅普诺夫稳定性的同时扩大可行空间以实现真正最优的方法。其核心思想是实施基于阻尼的有条件控制策略。当 IBR 观察到同步发电机足以稳定电网时,IBR 不一定需要采用单调函数进...

解读: 该非单调下垂控制技术对阳光电源储能与新能源并网产品具有重要应用价值。针对ST系列储能变流器和PowerTitan大型储能系统,非单调下垂策略可突破传统单调控制的功率分配限制,在多机并联场景下实现更优的频率响应性能和SOC均衡管理。对于构网型GFM控制技术,该方法可扩展控制参数设计空间,提升弱电网下的...

电动汽车驱动 储能系统 SiC器件 机器学习 ★ 5.0

基于流形特征插值的静态测量到动态测量的保证转换

Guaranteed Conversion From Static Measurements Into Dynamic Ones Based on Manifold Feature Interpolation

Lihao Mai · Haoran Li · Yang Weng · Erik Blasch 等5人 · IEEE Transactions on Power Systems · 2025年2月

可再生能源渗透率上升及电动汽车等负荷波动导致电力系统稳定性问题,亟需动态测量技术。然而,高分辨率量测设备(如PMU)在配电网中数量有限,而低分辨率量测设备广泛存在。本文提出一种多分辨率数据插值方法,结合自编码器与曲率正则化实现最优插值设计,并引入物理信息神经网络(PINN)和随机物理信息神经网络(SPINN)以融合系统物理规律并处理不确定性。所提方法在输电与配电系统中均得到充分验证。

解读: 该多分辨率动态测量技术对阳光电源储能与光伏产品具有重要应用价值。在PowerTitan大型储能系统中,可融合SCADA低分辨率数据与有限PMU高分辨率数据,通过流形插值实现全站动态状态估计,提升ST系列储能变流器的并网稳定性监测能力。对于分布式光伏场站,该方法可将SG逆变器的秒级功率数据插值为毫秒级...

储能系统技术 储能系统 SiC器件 地面光伏电站 ★ 5.0

基于轻量级实现的约束分支搜索拓扑识别流计算方法

Constrained Branching Search for Topology Identification Stream Computing With Lightweight Implementation

Zhuoheng Wang · Jie Gao · Qiushi Cui · Yang Weng · IEEE Transactions on Power Systems · 2024年12月

准确的拓扑感知对低压配电网(LVDN)稳定性至关重要。传统基于阻抗的拓扑恢复方法常因阻抗数据不准确而难以保证精度。针对传感器数据质量不佳的问题,本文提出一种面向辐射型LVDN的流式计算框架下的约束分支搜索拓扑识别方法。该方法利用基于物理模型的节点连接约束恢复网络结构,并引入插件式光伏接入位置的数学模型。设计了轻量级流计算系统CommuniDispatch,并结合拉丁超立方采样递归边界搜索(LHS-RBS)算法显著提升计算效率。实验验证了该方法在拓扑识别精度、抗数据质量问题鲁棒性、光伏定位能力及计...

解读: 该拓扑识别技术对阳光电源iSolarCloud智能运维平台和ST储能系统具有重要应用价值。在低压配电网场景中,准确的拓扑感知是实现分布式光伏和储能系统协同控制的基础。该方法的轻量级流计算框架可集成至iSolarCloud平台,实时监测SG系列逆变器接入位置和网络拓扑变化,提升智能诊断精度。对于Pow...

系统并网技术 可靠性分析 深度学习 ★ 4.0

性能保证的深度学习在动态智能电网网络攻击检测中的应用

Performance Guaranteed Deep Learning for Detection of Cyber-Attacks in Dynamic Smart Grids

Mostafa Mohammadpourfard · Chenhan Xiao · Yang Weng · IEEE Transactions on Power Systems · 2025年6月

虚假数据注入攻击(FDIA)对电力系统的可靠性构成了严重威胁,尤其是在诸如线路故障等动态运行条件下,这些情况会导致数据分布发生变化并出现概念漂移。传统的监督式方法依赖于带标签的数据集,这成本高昂且不适用于实时应用,并且在没有大量重新训练的情况下,往往无法适应新的攻击向量和运行变化。为应对这些挑战,我们设计了深度对比变分网络(DCVN),这是一个无监督学习框架,旨在无需带标签的数据或对网络拓扑进行假设的情况下检测FDIA。DCVN框架首先使用深度信念网络(DBN)从原始电力系统数据中进行稳健的特征...

解读: 该深度学习检测方法对阳光电源的储能和光伏产品安全性提升具有重要价值。可直接应用于ST储能系统和SG光伏逆变器的网络安全防护,特别是在大型储能电站和光伏电站的动态运行场景中。通过在iSolarCloud平台集成该检测算法,可提升PowerTitan等大型储能系统的运行可靠性,有效防范数据篡改导致的误操...

系统并网技术 ★ 4.0

配电网络中保护隐私的线路断电检测:一种高效且性能无损的方法

Privacy-Preserving Line Outage Detection in Distribution Grids: An Efficient Approach With Uncompromised Performance

Chenhan Xiao · Yizheng Liao · Yang Weng · IEEE Transactions on Power Systems · 2024年6月

近期研究进展表明,利用电压和功率数据等传感器测量值来识别配电网中的线路故障是有效的。然而,这些测量值可能会将电力用户的敏感信息(如家庭居住情况和经济状况)泄露给对手,从而无意中给电力用户带来隐私风险。为保护原始数据不直接暴露给第三方对手,本文提出了一种新颖的分布式数据加密方案。通过研究高斯差分隐私,证明了该加密策略的差分隐私属性,从而验证了其有效性。鉴于原始数据加密可能会影响故障检测的有效性,本文通过研究线路故障前后数据分布之间的库尔贝克 - 莱布勒散度来分析性能下降情况。通过这种分析,我们可以...

解读: 该隐私保护线路断电检测技术对阳光电源的储能和光伏产品线具有重要应用价值。可集成至ST系列储能变流器和SG系列光伏逆变器的控制系统中,通过安全多方计算实现分布式设备间的数据协同分析。这将增强iSolarCloud平台的智能运维能力,在保护用户数据隐私的同时提升故障诊断效率。特别是在大型储能电站和工商业...