← 返回
储能系统技术 储能系统 SiC器件 地面光伏电站 ★ 5.0

基于轻量级实现的约束分支搜索拓扑识别流计算方法

Constrained Branching Search for Topology Identification Stream Computing With Lightweight Implementation

作者 Zhuoheng Wang · Jie Gao · Qiushi Cui · Yang Weng
期刊 IEEE Transactions on Power Systems
出版日期 2024年12月
技术分类 储能系统技术
技术标签 储能系统 SiC器件 地面光伏电站
相关度评分 ★★★★★ 5.0 / 5.0
关键词 低压配电网 拓扑识别 分布式能源资源 流计算框架 计算效率
语言:

中文摘要

准确的拓扑感知对低压配电网(LVDN)稳定性至关重要。传统基于阻抗的拓扑恢复方法常因阻抗数据不准确而难以保证精度。针对传感器数据质量不佳的问题,本文提出一种面向辐射型LVDN的流式计算框架下的约束分支搜索拓扑识别方法。该方法利用基于物理模型的节点连接约束恢复网络结构,并引入插件式光伏接入位置的数学模型。设计了轻量级流计算系统CommuniDispatch,并结合拉丁超立方采样递归边界搜索(LHS-RBS)算法显著提升计算效率。实验验证了该方法在拓扑识别精度、抗数据质量问题鲁棒性、光伏定位能力及计算效率方面的优越性。

English Abstract

Accurate topological awareness is critical to the stability of low-voltage distribution networks (LVDNs). However, traditional impedance-based topology restoration assumes accuracy that is often unattainable due to impedance data inaccuracy. Given LVDN sensor quality, robustness against data quality issue is crucial. Additionally, the integration of distributed energy resources (DERs) is expanding. Identifying their locations is necessary for effective load management and decreasing utility loss. Conventional identification methods rely on centralized data processing. However, they are limited due to increased storage and computational demands. This paper presents a novel approach employing constrained branching search within a stream computing framework, tailored for radial LVDNs. The proposed method uses node connection (NC) restrictions to recover topology. These constraints are based on the radial LVDN physical model. Additionally, a mathematical model for plug-in PV locations is introduced. We design CommuniDispatch, a lightweight implementation stream computing framework integrating our topology identification method. Enhanced by a Latin hypercube sampling-based recursive bound & search (LHS-RBS) algorithm, it significantly amplifies computational efficiency. Our experiments on diverse radial LVDNs validate the method's accuracy in topology identification and robustness against data quality issues, along with plug-in PV location and the computational efficiency of the LHS-RBS.
S

SunView 深度解读

该拓扑识别技术对阳光电源iSolarCloud智能运维平台和ST储能系统具有重要应用价值。在低压配电网场景中,准确的拓扑感知是实现分布式光伏和储能系统协同控制的基础。该方法的轻量级流计算框架可集成至iSolarCloud平台,实时监测SG系列逆变器接入位置和网络拓扑变化,提升智能诊断精度。对于PowerTitan大型储能系统,该技术可优化多点接入场景下的拓扑识别,增强系统在数据质量不佳时的鲁棒性,支持构网型GFM控制策略的精准实施。约束分支搜索算法的高效性为边缘侧设备的拓扑自适应功能提供了轻量化实现方案,助力阳光电源构建更智能的分布式能源管理系统。