找到 5 条结果 · IEEE Access
基于Transformer的电动汽车电池荷电状态估计模型
A Transformer-Based Model for State of Charge Estimation of Electric Vehicle Batteries
Metin Yılmaz · Eyüp Çinar · Ahmet Yazıcı · IEEE Access · 2025年1月
电池在电动汽车EV系统设备中发挥关键作用。这些应用的安全性和性能依赖准确的电池管理系统BMS来监测和优化电池性能。传统BMS系统因复杂化学过程和电池老化在充电预测过程中面临挑战,导致故障。完美传感器的缺失凸显外部因素特别是传感器噪声引起的测量问题的局限性。因此需要能解决现实世界电池充电预测问题的算法。本研究比较创新解决方案Transformer模型与传统长短期记忆LSTM、双向LSTM和支持向量回归SVR。本研究旨在使用NASA、BMW i3、斯坦福大学电池数据集和本研究收集的Musoshi品牌...
解读: 该Transformer模型SOC估计技术对阳光电源电池管理系统产品线有重要应用价值。阳光车载OBC和储能BMS需要高精度SOC估计来优化充电策略和电池保护。Transformer相比传统LSTM的性能优势值得阳光BMS算法借鉴。RMSE接近1的卓越精度可显著提升阳光BMS的SOC估计准确性。该技术...
基于Transformer的传感器融合在自动驾驶中的应用综述
Transformer-Based Sensor Fusion for Autonomous Vehicles: A Comprehensive Review
Ahmed Abdulmaksoud · Ryan Ahmed · IEEE Access · 2025年1月
传感器融合在机器人、自动驾驶和航空航天等关键领域至关重要。通过整合多源传感器数据,可克服单一传感器的局限性,提升测量可靠性并降低不确定性。基于深度学习的融合方法促进了多模态学习的发展,增强了目标检测性能,但在恶劣天气条件下仍面临挑战。Transformer模型因其在视觉与语言等领域的强大建模能力,为传感器融合提供了新机遇,但其高延迟与计算开销仍是瓶颈。本文系统综述了传感器融合与Transformer模型的研究进展,深入调研了基于Transformer的相机-LiDAR与相机-雷达融合的前沿方法,...
解读: 该Transformer传感器融合技术对阳光电源新能源汽车产品线具有重要应用价值。在车载OBC充电机和电机驱动系统中,可融合电流、电压、温度等多传感器数据,提升SiC器件的实时故障诊断与可靠性预测能力。对于充电桩产品,多模态融合可增强异常检测精度,优化充电安全策略。Transformer的长序列建模...
基于TCN-Transformer模型的多物理场变压器异常状态识别
Transformer Abnormal State Identification Based on TCN-Transformer Model in Multiphysics
Junjie Feng · Ruosong Shang · Ming Zhang · Guojun Jiang 等6人 · IEEE Access · 2025年1月
变压器是电力系统关键组件,其运行稳定性对确保电网安全可靠性起决定性作用。为应对实际运行中负荷和环境因素影响准确评估变压器健康的挑战,本文分析变压器的电气、热和振动特性。采用k-means++算法根据变压器负荷电流、环境温度和运行电压三个关键参数分类运行条件。提出基于时序卷积网络-Transformer(TCN-Transformer)的融合模型识别变压器异常运行状态。以500kV变压器为例进行实验。结果表明,所提TCN-Transformer模型在预测精度方面显著优于对比算法。模型有效捕获数据内...
解读: 该多物理场诊断技术对阳光电源储能变压器和箱变监测具有应用价值。阳光大型光伏电站和储能站配备大量箱式变压器,需要实时健康监测和异常预警。该研究的TCN-Transformer模型集成电气、热和振动多维数据,可应用于阳光箱变智能监控系统,实现异常状态早期识别。在储能电站中,变压器异常可能导致系统停机和经...
通过Transformer模型实现电池储能系统的充电诊断和状态估计
Charge Diagnostics and State Estimation of Battery Energy Storage Systems Through Transformer Models
Rolando Antonio Gilbert Zequera · Anton Rassõlkin · Toomas Vaimann · Ants Kallaste · IEEE Access · 2025年1月
随着人工智能持续发展,设计提供能源技术诊断和维护的准确算法是能源转型领域的挑战性任务。本研究专注于Transformer模型实施用于电池储能系统充电诊断和算法设计。实验使用可编程直流电子负载测试两个锂离子电池单元评估充电指标,每个单元执行20次电池测试。采用滤波器、包装器和嵌入方法技术实现特征选择并展示电池测试关键性能指标。时间序列和状态估计是执行充电诊断和荷电状态预测的监督学习技术。结果显示Transformer模型卓越性能指标,相比传统深度学习算法在模型评估中达到超过94%准确率。
解读: 该Transformer电池诊断技术对阳光电源储能系统BMS具有重要应用价值。阳光ST系列储能变流器配套的电池管理系统需要精准的SOC估计和健康诊断,该Transformer模型可提升预测准确率至94%以上。阳光可将该技术集成到BMS算法中,实现更精准的电池状态估计和寿命预测,优化充放电策略,延长电...
级联H桥储能变流器的模块化冗余控制与容错运行策略
Integrated Spatiotemporal Hybrid Solar PV Generation Forecast Between Countries on Different Continents Using Transfer Learning Method
Bowoo Kim · Kaouther Belkilani · Gerd Heilscher · Marc-Oliver Otto 等6人 · IEEE Access · 2025年1月
级联H桥拓扑广泛应用于大规模储能系统,但模块故障会影响系统可用性。本文提出模块化冗余控制策略,通过动态拓扑重构和功率再分配实现故障模块的热插拔和容错运行,保证系统连续性。
解读: 该容错控制技术可应用于阳光电源ST系列大规模储能系统。通过模块化冗余设计提升系统可靠性,实现故障模块的在线维护,降低非计划停机损失,为电网侧储能和工商业储能提供高可用性保障。...