← 返回

基于TCN-Transformer模型的多物理场变压器异常状态识别

Transformer Abnormal State Identification Based on TCN-Transformer Model in Multiphysics

作者 Junjie Feng · Ruosong Shang · Ming Zhang · Guojun Jiang · Qiong Wang · Guangyong Zhang
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 SiC器件 多物理场耦合 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 变压器 运行状态识别 TCN - Transformer模型 k - means++算法 特征分析
语言:

中文摘要

变压器是电力系统关键组件,其运行稳定性对确保电网安全可靠性起决定性作用。为应对实际运行中负荷和环境因素影响准确评估变压器健康的挑战,本文分析变压器的电气、热和振动特性。采用k-means++算法根据变压器负荷电流、环境温度和运行电压三个关键参数分类运行条件。提出基于时序卷积网络-Transformer(TCN-Transformer)的融合模型识别变压器异常运行状态。以500kV变压器为例进行实验。结果表明,所提TCN-Transformer模型在预测精度方面显著优于对比算法。模型有效捕获数据内关键信息,实现变压器多变量特征序列的卓越预测。这些发现验证了所提方法识别变压器异常运行状态的合理性和准确性。

English Abstract

Transformers are critical components in power systems, and their operational stability plays a decisive role in ensuring the safety and reliability of the power grid. To address the challenges of accurately assessing transformer health due to the influence of load and environmental factors during actual operation, this paper analyzes the electrical, thermal, and vibrational characteristics of transformers. A k-means++ algorithm is employed to classify operating conditions based on three key parameters: transformer load current, ambient temperature, and operating voltage. A fusion model based on the Temporal Convolutional Network-Transformer (TCN-Transformer) is proposed to identify abnormal operating states of transformers. Experiments were conducted using a 500 kV transformer as an example. The results demonstrate that the proposed TCN-Transformer model significantly outperforms comparative algorithms in terms of prediction accuracy. The model effectively captures critical information within the data, achieving superior multivariate feature sequence prediction for transformers. These findings validate the reasonableness and accuracy of the proposed method for identifying abnormal transformer operating states.
S

SunView 深度解读

该多物理场诊断技术对阳光电源储能变压器和箱变监测具有应用价值。阳光大型光伏电站和储能站配备大量箱式变压器,需要实时健康监测和异常预警。该研究的TCN-Transformer模型集成电气、热和振动多维数据,可应用于阳光箱变智能监控系统,实现异常状态早期识别。在储能电站中,变压器异常可能导致系统停机和经济损失。该多物理场融合方法可部署在阳光电站监控平台,通过传感器数据分析预测变压器故障,支持预测性维护。结合阳光iSolarCloud云平台的大数据分析,该技术可优化变压器运维策略,延长设备寿命,降低维护成本,提升电站可靠性和整体经济效益。