找到 4 条结果 · IEEE Access

排序:
储能系统技术 储能系统 ★ 5.0

基于注意力驱动贝叶斯优化混合集成的济州岛可再生能源系统精准能源预测

Attention-Driven Hybrid Ensemble Approach With Bayesian Optimization for Accurate Energy Forecasting in Jeju Island's Renewable Energy System

Muhammad Ali Iqbal · Joon-Min Gil · Soo Kyun Kim · IEEE Access · 2025年1月

可再生能源并网带来能源需求和供给预测的迫切需求,波动的用户需求和高变异性能源给供需平衡带来挑战。本文提出注意力驱动贝叶斯优化混合集成框架ABHEF,在济州岛能源混合数据上验证。ABHEF集成ConvBiLSTM、ETCN、TFT和DAT等先进模型捕获短期波动和长期趋势。贝叶斯优化确定各模型最优超参数。CatBoost作为元模型表现最佳。对于小时供给预测,MAE和RMSE相比BiLSTM分别降低52%和50%;对于日供给预测,降低76%和77%。该框架为可再生能源系统能源管理和资源规划提供显著优势...

解读: 该能源预测技术对阳光电源智慧能源管理平台iSolarCloud有重要应用价值。阳光iSolarCloud管理海量光伏储能电站,需要精准的发电和负荷预测。ABHEF混合集成框架可集成到阳光预测系统中,结合天气数据和历史运行数据实现高精度多时间尺度预测。该技术可优化阳光储能系统充放电策略和新能源消纳,提...

光伏发电技术 可靠性分析 机器学习 深度学习 ★ 5.0

基于卷积神经网络、小波神经网络与掩码多头注意力机制的全球辐照度预测模型

A Global Irradiance Prediction Model Using Convolutional Neural Networks, Wavelet Neural Networks, and Masked Multi-Head Attention Mechanism

Walid Mchara · Lazhar Manai · Mohamed Abdellatif Khalfa · Monia Raissi 等5人 · IEEE Access · 2025年1月

准确预测全球辐照度对光伏系统尤其是太阳能电动汽车的能量管理至关重要。传统模型难以捕捉辐照数据中复杂的时空依赖性,导致在多变天气条件下预测精度受限。本文提出一种融合卷积神经网络(CNN)、小波神经网络(WNN)与掩码多头注意力(MMHA)机制的新型混合框架CNN-WNN-MMHA。CNN提取局部空间特征,WNN进行频域分解以捕获多尺度变化,MMHA建模时间依赖并编码位置信息。模型在突尼斯八年实测气候数据上训练与验证,实验表明其性能显著优于LSTM、BiLSTM和CNN-LSTM等先进方法,MAPE...

解读: 该混合深度学习辐照度预测模型对阳光电源多条产品线具有重要应用价值。在SG系列光伏逆变器中,可优化MPPT算法的前瞻性控制,提前调整功率跟踪策略;在PowerTitan储能系统中,精准的辐照度预测可优化充放电调度策略,提升光储协同效率;在iSolarCloud智能运维平台中,该模型可增强预测性维护能力...

光伏发电技术 储能系统 深度学习 ★ 5.0

一种基于双流注意力机制的混合网络用于光伏发电预测

A Novel Dual-Stream Attention-Based Hybrid Network for Solar Power Forecasting

Rafiq Asghar · Michele Quercio · Lorenzo Sabino · Assia Mahrouch 等5人 · IEEE Access · 2025年1月

光伏发电功率预测对保障电网安全运行、降低运营成本具有重要意义。本文提出一种基于双向长短期记忆网络(BiLSTM)与卷积神经网络(CNN)的新型双流混合模型,通过并行提取时间与空间特征,并融合多头注意力机制强化关键特征选择。该模型在不同时间窗口、四季及天气条件下进行实验验证,并与三种单一模型和五种混合深度学习模型对比。结果表明,所提模型在多种气象、季节与气候条件下均具备优异的光伏功率预测精度。

解读: 该双流注意力混合预测模型对阳光电源iSolarCloud智能运维平台和ST系列储能系统具有重要应用价值。BiLSTM-CNN双流架构可集成至云平台的功率预测模块,通过多头注意力机制提升不同季节和天气条件下的预测精度,优化SG系列逆变器的MPPT算法动态响应。对PowerTitan大型储能系统,精准的...

光伏发电技术 储能系统 微电网 强化学习 ★ 4.0

通过结合负荷与光伏预测的迁移学习提升基于强化学习的能量管理

Enhancing Reinforcement Learning-Based Energy Management Through Transfer Learning With Load and PV Forecasting

Chang Xu · Masahiro Inuiguchi · Naoki Hayashi · Wong Jee Keen Raymond 等6人 · IEEE Access · 2025年1月

在可再生能源微电网中,高效能量管理对维持系统稳定性和降低运行成本至关重要。传统强化学习(RL)控制器常面临训练时间长和过程不稳定等问题。本研究提出一种融合迁移学习(TL)技术的新型RL方法,利用ResNet18+BiLSTM等先进预测模型生成的合成数据对RL智能体进行预训练,嵌入领域知识以提升性能。基于一年运行数据的实验结果表明,相较于基线模型,TL增强的RL控制器累计运行成本最高降低62.63%,系统不平衡度改善达80%,并显著提升初始性能与训练效率。该方法展现了TL与RL结合在复杂电力系统实...

解读: 该迁移学习增强的强化学习能量管理技术对阳光电源PowerTitan储能系统和ST系列储能变流器具有重要应用价值。研究中的ResNet18+BiLSTM预测模型可集成至iSolarCloud云平台,提升光伏-储能微电网的实时调度能力。62.63%的成本降低和80%的系统不平衡改善直接契合阳光电源ESS...