← 返回
基于注意力驱动贝叶斯优化混合集成的济州岛可再生能源系统精准能源预测
Attention-Driven Hybrid Ensemble Approach With Bayesian Optimization for Accurate Energy Forecasting in Jeju Island's Renewable Energy System
| 作者 | Muhammad Ali Iqbal · Joon-Min Gil · Soo Kyun Kim |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源 能源供需预测 ABHEF框架 贝叶斯优化 能源管理 |
语言:
中文摘要
可再生能源并网带来能源需求和供给预测的迫切需求,波动的用户需求和高变异性能源给供需平衡带来挑战。本文提出注意力驱动贝叶斯优化混合集成框架ABHEF,在济州岛能源混合数据上验证。ABHEF集成ConvBiLSTM、ETCN、TFT和DAT等先进模型捕获短期波动和长期趋势。贝叶斯优化确定各模型最优超参数。CatBoost作为元模型表现最佳。对于小时供给预测,MAE和RMSE相比BiLSTM分别降低52%和50%;对于日供给预测,降低76%和77%。该框架为可再生能源系统能源管理和资源规划提供显著优势。
English Abstract
The rapid integration of renewable energy sources into power grids has created an urgent need for accurate energy demand and supply forecasting models capable of managing the inherent variability of renewable energy generation. The combination of fluctuating consumer demand patterns and high variability across different energy sources presents significant challenges in maintaining a reliable balance between supply and demand. To address these challenges, we propose a Attention-driven Bayesian-Optimized Hybrid Ensemble Framework (ABHEF), evaluated on Jeju Island’s energy mix data. ABHEF integrates state-of-the-art models—ConvBiLSTM (Convolutional Bidirectional Long Short-Term Memory), ETCN (Enhanced Temporal Convolutional Network), TFT (Temporal Fusion Transformer), and DAT (Dual Attention Transformer)—to capture both short-term fluctuations and long-term trends in energy data. The proposed framework is evaluated on actual energy demand and supply data from Jeju Island, along with key weather attributes, thereby enhancing the model’s real-world applicability and accuracy. Bayesian optimization was applied to each model to determine optimal hyperparameters, to ensure the peak predictive performance. The output of the base models was stacked, and four meta-models (Gradient Boosting, LGBM, Ridge, and CatBoost) were applied. Among these, CatBoost demonstrated the best performance and was selected as the final meta-model. For hourly supply prediction, our selected meta-model achieved a 52% reduction in MAE and a 50% reduction in RMSE compared to BiLSTM, the best-performing standalone time-series model, validated through a consistent evaluation of accuracy metrics across all models on the same dataset. For hourly demand predictions, it achieved a 43% reduction in MAE and a 34% reduction in RMSE. For daily supply predictions, it demonstrated a 76% reduction in MAE and a 77% reduction in RMSE, while for daily demand predictions, the reductions were 70% in MAE and 69% in RMSE. These results highlight the superior accuracy of the proposed framework, offering significant benefits for energy management and resource planning in renewable energy systems.
S
SunView 深度解读
该能源预测技术对阳光电源智慧能源管理平台iSolarCloud有重要应用价值。阳光iSolarCloud管理海量光伏储能电站,需要精准的发电和负荷预测。ABHEF混合集成框架可集成到阳光预测系统中,结合天气数据和历史运行数据实现高精度多时间尺度预测。该技术可优化阳光储能系统充放电策略和新能源消纳,提升电网友好性。贝叶斯优化方法对阳光AI算法的超参数调优也有借鉴意义。