找到 6 条结果 · Applied Energy

排序:
风电变流技术 SiC器件 ★ 5.0

一种数据-物理混合驱动的大规模风电场布局优化框架

A data-physics hybrid-driven layout optimization framework for large-scale wind farms

Peiyi Li · Yanbo Ch · Anran Hu · Lei Wang 等6人 · Applied Energy · 2025年1月 · Vol.392

摘要 全球风能利用的发展趋势正朝着建设大规模、远距离风电场的方向推进,而战略性的布局优化对于提升风电场发电量至关重要。然而,大规模风电场布局优化(WFLO)面临诸多挑战,主要体现在涉及高维决策变量的复杂计算,以及在尾流模型精度与计算效率之间需要进行权衡。为解决上述问题,本文提出了一种新颖的数据-物理混合驱动的大规模风电场布局优化框架。该框架尝试将含可变参数的物理方程融入建模过程,以指导尾流效应的建模,并进一步促进布局优化的实现。具体而言,本文提出了物理信息引导的双神经网络(PIDNN)模型用于风...

解读: 该数据-物理混合驱动的大规模风电场布局优化框架对阳光电源风电变流器及储能系统具有重要借鉴价值。其物理信息双神经网络(PIDNN)模型通过融合Navier-Stokes方程与可变推力系数,实现尾流效应精准建模,可启发阳光电源在风储一体化项目中优化ST系列储能变流器的功率调度策略。基因定向差分进化算法(...

光伏发电技术 储能系统 ★ 5.0

基于预测的风-光互补电解制氢系统的设计与优化调度

Design and optimal scheduling of a forecasting-based wind-and-photovoltaic complementary electrolytic hydrogen production system

Weichao Dong · Hexu Sun · Zheng Li · Huifang Yang · Applied Energy · 2025年1月 · Vol.392

摘要 氢能可有效缓解能源短缺并减少环境污染。本文首次设计了一个完整的风能与光伏(PV)互补制氢系统,包括高效的发电系统模型、精确的预测模型、优良的优化调度策略以及高效的催化剂。该离网型互补发电系统在直流母线上实现。提出了一种混合预测模型,结合长短期记忆网络(LSTM)、分位数回归(QR)和正则藤copula方法。LSTM与QR相结合可获得边缘概率密度函数(PDF)。利用正则藤copula建立风能与光伏能源之间的相关性,并将边缘PDF与其相关性结构结合,实现对风能和光伏出力的联合预测。提出一种基于...

解读: 该风光制氢系统对阳光电源ST系列储能变流器和SG光伏逆变器具有重要应用价值。文中直流母线离网架构可结合我司1500V系统和三电平拓扑技术,提升功率转换效率。LSTM-DRL多目标优化调度策略可集成至iSolarCloud平台,实现风光出力预测与氢储能协同控制。研究的3.1美元/kg制氢成本为Powe...

系统集成 调峰调频 微电网 ★ 5.0

基于解聚合策略的虚拟电厂异构柔性资源优化协同调度

A De-aggregation strategy based optimal co-scheduling of heterogeneous flexible resources in virtual power plant

Zixuan Zheng · Jie Li · Xiaoming Liu · Chunjun Huang 等10人 · Applied Energy · 2025年1月 · Vol.383

摘要 虚拟电厂(VPP)作为一种有效解决方案,可在包含多种类型柔性资源(FRs)的并网型微电网中维持内部功率平衡,并参与外部削峰辅助服务。然而,随着不同类型柔性资源在响应行为上的特征异质性日益显著,以及其在削峰过程中的耦合关系,给VPP调度指令的精确分解带来了挑战。本文提出一种基于离散选择模型和特征匹配方法的解聚合策略,以动态排序柔性资源的响应顺序,同时优化VPP的削峰能力。首先,对异构特征进行精细化建模,以刻画多类型柔性资源满足并网微电网调度需求(SDGM)的响应能力。随后,构建特征差异量化模...

解读: 该VPP解聚优化策略对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。通过异构资源特征建模和动态响应排序,可提升储能系统参与电网调峰辅助服务的精准度。结合iSolarCloud平台的预测性维护能力,能够优化多类型柔性资源协同调度,降低70%调峰偏差。该技术可增强阳光电源微网解决...

光伏发电技术 强化学习 ★ 5.0

基于鲁棒深度强化学习的考虑输电网电压波动的多馈线配电网分布式电压控制

Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning

Zhi Wu · Yiqi Li · Xiao Zhang · Shu Zheng 等5人 · Applied Energy · 2025年1月 · Vol.379

摘要 在多馈线配电网中,区域间光伏出力与负荷需求的功率平衡问题更加复杂。为解决上述问题,本文提出一种基于鲁棒深度强化学习的多智能体分布式电压控制策略,以降低电压偏差。将整个多馈线配电网划分为主智能体和多个子智能体,建立了一种考虑输电网电压波动及其对应功率波动的多智能体分布式电压控制模型。主智能体基于子智能体上传的信息,将输电网电压波动及相应功率波动的不确定性建模为对系统状态的扰动,并采用鲁棒深度强化学习方法确定有载调压变压器分接头的位置。进一步地,各子智能体利用二阶锥松弛技术调节每条馈线上逆变器...

解读: 该多馈线分布式电压控制技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。论文提出的主从代理架构可应用于iSolarCloud平台,实现毫秒级电压调节决策。鲁棒深度强化学习方法可增强PowerTitan储能系统应对电网电压波动的能力,二阶锥松弛技术优化逆变器无功输出与阳光电源现有M...

储能系统技术 ★ 4.0

面向集成零排放航空

IZEA)的液氢储存、热管理与输运控制系统

Parmit S.Virdi · Wei Guo · Louis N. Cattafest · Peter Cheetham 等12人 · Applied Energy · 2025年1月 · Vol.393

摘要 航空业的快速发展凸显了迫切需要减少碳排放和凝结尾迹排放,这两者是导致气候变化的关键因素。氢气因其高的比化学能,成为一种极具前景的清洁燃料替代方案。为推动可持续航空发展,本文提出了一种面向集成零排放航空(Integrated Zero Emission Aviation, IZEA)的创新性液氢储存、热管理与输运控制系统设计。本设计利用液氢的制冷能力,对关键动力系统组件的温度及热负荷进行有效调控。通过调节储氢罐内的压力,我们验证了系统能够实现所需的氢气质量流量——最高达0.25 kg/s,以...

解读: 该液氢热管理系统对阳光电源储能及电驱动产品具有重要启示。文中通过系统级优化实现0.62重量指标和16.2MW功率传输的方法,可借鉴于PowerTitan储能系统的热管理优化,特别是PCS功率器件的液冷设计。氢燃料冷却潜力为EV充电桩大功率模块散热提供新思路。压力调控的流量管理策略可应用于储能系统BM...

氢能与燃料电池 ★ 4.0

面向大负载波动质子交换膜燃料电池系统的控制导向热管理策略

Control-oriented thermal management strategies for large-load fluctuation PEM fuel cell systems

Yuhan Li · Zhifeng Zheng · Yangge Guo · Xiaojing Cheng 等8人 · Applied Energy · 2025年1月 · Vol.392

摘要 热管理控制对质子交换膜燃料电池(PEMFC)的性能与耐久性具有重要意义。在大负载波动工况下,由于系统具有强非线性和时变时滞特性,热管理控制面临巨大挑战。为此,本文采用串级内模控制(IMC)方法,结合电流前馈控制,以提升宽范围负载变化下的跟踪性能及对时滞扰动的鲁棒性,同时降低系统时滞影响。此外,提出了一种针对恒温器和风扇的双内环串级IMC结构,以进一步增强系统鲁棒性,并引入改进型Smith预估器以改善时滞扰动的抑制能力。首先通过阶跃响应测试和白噪声扰动测试分别评估所提出控制策略的响应速度与鲁...

解读: 该燃料电池热管理控制技术对阳光电源氢能业务拓展具有重要参考价值。文中提出的级联内模控制(IMC)与电流前馈结合策略,可应用于公司充电桩及储能系统的热管理优化,特别是ST系列PCS在大功率波动场景下的温控精度提升。双内环级联IMC与改进Smith预估器的鲁棒性设计思路,可借鉴至SG逆变器的宽温度范围运...