← 返回
系统集成 调峰调频 微电网 ★ 5.0

基于解聚合策略的虚拟电厂异构柔性资源优化协同调度

A De-aggregation strategy based optimal co-scheduling of heterogeneous flexible resources in virtual power plant

作者 Zixuan Zheng · Jie Li · Xiaoming Liu · Chunjun Huang · Wenxi Hu · Xianyong Xiao · Shu Zhang · Yongjun Zhou · Song Yu · Yi Zong
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 383 卷
技术分类 系统集成
技术标签 调峰调频 微电网
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A de-aggregation strategy for multi-type flexible resources in virtual power plant scheduling for optimal peak shaving.
语言:

中文摘要

摘要 虚拟电厂(VPP)作为一种有效解决方案,可在包含多种类型柔性资源(FRs)的并网型微电网中维持内部功率平衡,并参与外部削峰辅助服务。然而,随着不同类型柔性资源在响应行为上的特征异质性日益显著,以及其在削峰过程中的耦合关系,给VPP调度指令的精确分解带来了挑战。本文提出一种基于离散选择模型和特征匹配方法的解聚合策略,以动态排序柔性资源的响应顺序,同时优化VPP的削峰能力。首先,对异构特征进行精细化建模,以刻画多类型柔性资源满足并网微电网调度需求(SDGM)的响应能力。随后,构建特征差异量化模型与匹配优先级准则,用以描述特征映射关系并指导动态决策过程。在此基础上,对所考虑虚拟电厂中的多类型柔性资源进行协同调度,形成实现削峰目标的动态响应序列。基于某区域并网微电网实际数据的案例研究表明,所提策略可使投资回报率提高6.1%,削峰偏差和与主网的功率交换分别降低70%和13.1%,有效提升了并网微电网的功率平衡能力及其参与削峰辅助服务的水平。

English Abstract

Abstract Virtual power plant (VPP) serves as an effective solution for maintaining internal power balance and participating in external peak shaving auxiliary services within grid-connected microgrid involved in multi-type flexible resources (FRs). However, with increasing prominence of the feature heterogeneity in response behaviors of diverse FRs and their coupling in peak shaving poses challenges in the accurate decomposition of VPP scheduling commands. This paper proposes a de-aggregation strategy, utilizing discrete choice model and feature matching methods, to dynamically sequence FRs responses while optimizing VPP's peak shaving capability. Initially, heterogeneous features are refined and modeled to characterize the response capability of multi-type FRs in meeting the scheduled demand of grid-connected microgrid (SDGM). Subsequently, a feature difference quantification model and matching priority criterion are formulated to describe the feature mapping relationship and guide dynamic decision-making process. On this basis, the multi-type FRs are co-scheduled in the considered VPP to form a dynamic response sequence achieving peak shaving objectives. Case studies based on real data from a region-connected microgrid demonstrate the proposed strategy's performance in improving return on investment by 6.1 %, reducing peak shaving deviation and power exchange with main grid by 70 % and 13.1 %, respectively, and effectively improve the ability of grid-connected microgrid to balance the power and participate in peaking auxiliary services.
S

SunView 深度解读

该VPP解聚优化策略对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。通过异构资源特征建模和动态响应排序,可提升储能系统参与电网调峰辅助服务的精准度。结合iSolarCloud平台的预测性维护能力,能够优化多类型柔性资源协同调度,降低70%调峰偏差。该技术可增强阳光电源微网解决方案的功率平衡能力,为GFM控制策略和VSG技术在并网微网场景的应用提供算法优化思路,提升投资回报率6.1%,具备显著商业价值。