← 返回
储能系统技术
★ 4.0
面向集成零排放航空
IZEA)的液氢储存、热管理与输运控制系统
语言:
中文摘要
摘要 航空业的快速发展凸显了迫切需要减少碳排放和凝结尾迹排放,这两者是导致气候变化的关键因素。氢气因其高的比化学能,成为一种极具前景的清洁燃料替代方案。为推动可持续航空发展,本文提出了一种面向集成零排放航空(Integrated Zero Emission Aviation, IZEA)的创新性液氢储存、热管理与输运控制系统设计。本设计利用液氢的制冷能力,对关键动力系统组件的温度及热负荷进行有效调控。通过调节储氢罐内的压力,我们验证了系统能够实现所需的氢气质量流量——最高达0.25 kg/s,以满足一款100座级混合电推进飞机原型机在16.2 MW峰值功率需求下的供氢要求,同时借助实用化的换热器高效冷却动力系统。通过全面的系统级优化,我们确定了最优的储氢罐与换热器配置,使整体质量指数最大化达到0.62,该指数定义为氢燃料质量与燃料、储罐及热管理系统总质量之比。研究结果强调了系统级优化在确定关键设计参数中的核心作用,为零排放航空技术的发展铺平道路,推动航空工业的环境可持续性进步。
English Abstract
Abstract The rapid growth of the aviation sector underscores the urgent need to reduce carbon and contrail emissions, key contributors to climate change. Hydrogen, with its high specific chemical energy, emerges as a promising clean fuel alternative. To promote sustainable aviation, we propose an innovative design for a liquid hydrogen storage, thermal management, and transfer-control system tailored for Integrated Zero Emission Aviation (IZEA). Our design harnesses the cooling power of liquid hydrogen to manage the temperature and thermal loads on essential power system components. By regulating the pressure in the storage tank, we demonstrate the feasibility of delivering the required hydrogen mass flow rates—up to 0.25 kg/s—to meet a peak power demand of 16.2 MW for a prototype 100-passenger hybrid-electric aircraft, while efficiently cooling the power system using practical heat exchangers. Through comprehensive system-level optimization, we have identified the optimal tank and heat exchanger configurations that maximize the overall gravimetric index to a value of 0.62, where the index is defined as the ratio of the hydrogen fuel mass to the total mass of the fuel, storage tank, and thermal management system. Our findings emphasize the critical importance of system-level optimization in determining key design parameters, paving the way for zero-emission aviation technologies and advancing environmental sustainability in the aviation industry.
S
SunView 深度解读
该液氢热管理系统对阳光电源储能及电驱动产品具有重要启示。文中通过系统级优化实现0.62重量指标和16.2MW功率传输的方法,可借鉴于PowerTitan储能系统的热管理优化,特别是PCS功率器件的液冷设计。氢燃料冷却潜力为EV充电桩大功率模块散热提供新思路。压力调控的流量管理策略可应用于储能系统BMS热平衡控制,提升SiC/GaN器件在极端工况下的可靠性,推动零碳交通与储能技术融合创新。