找到 5 条结果 · Applied Energy

排序:
光伏发电技术 储能系统 ★ 5.0

基于多域协作与协变量交互的严重数据缺失下鲁棒光伏预测

Robust photovoltaic forecasting under severe data missingness via multi-domain collaboration and covariate interaction

Ke Yana · Jian Liua · Jiazhen Zhang · Fan Yangb 等6人 · Applied Energy · 2025年1月 · Vol.401

摘要 高质量的光伏发电(PV)功率预测对于高效的能源管理和可靠的电网集成至关重要,然而实际应用中的数据常常面临目标变量和辅助变量的大范围缺失问题。为应对这一挑战,本文提出MDCTL-MCI,一种具备缺失感知能力的预测框架,该框架联合利用信号分解、多尺度协变量交互以及多域协同迁移学习。首先,采用多元奇异谱分析(MSSA)对不完整时间序列进行去噪与重构,在无需显式填补的情况下增强潜在的时间结构特征。接着,引入轻量级的多尺度协变量交互(MCI)模块,建模重构后的光伏功率、全球水平辐照度、直接法向辐照度...

解读: 该多域协同光伏预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。针对实际电站数据缺失问题,MSSA信号重构与多尺度协变量交互建模可直接集成至SG系列逆变器的MPPT优化算法,提升发电功率预测精度10.5%-15.3%。多站点迁移学习策略可赋能PowerTitan储能系统的充放电调...

风电变流技术 ★ 5.0

一种考虑台风灾害的韧性导向型海上风电场与输电网络协同规划多场景分布鲁棒模型

A multi-scenario distributionally robust model for resilience-oriented offshore wind farms and transmission network integrated planning considering typhoon disasters

Yang Yuan · Heng Zhang · Shenxi Zhang · Haozhong Cheng 等7人 · Applied Energy · 2025年1月 · Vol.392

现有韧性导向型海上风电场与输电网络协同规划(ROWF&TNIP)模型在刻画台风灾害期间风力发电和电网故障相关不确定性方面缺乏细致描述,且在提升系统韧性时往往表现出较强的保守性。为克服上述局限,本文提出一种考虑台风灾害的多场景分布鲁棒ROWF&TNIP模型。该模型综合考虑正常运行场景(NOS)和台风灾害场景(TDS)下风力发电与电网故障的多重不确定性,以较低的保守程度实现韧性的提升。首先,构建了针对海上风电场(OWF)出力与电网故障的多场景分布鲁棒不确定性集合:基于条件风险价值(CVaR)的多场景...

解读: 该海上风电韧性规划模型对阳光电源ST系列储能系统和智能运维平台具有重要应用价值。论文提出的多场景分布鲁棒优化方法可应用于PowerTitan储能系统的台风灾害应对策略,通过CVaR不确定性集建模提升极端天气下源网荷协调能力。差异化加固模型与预防性机组组合策略可集成至iSolarCloud平台,实现海...

储能系统技术 储能系统 ★ 5.0

基于随机森林可解释人工智能揭示储能与可再生能源在脱碳进程中的协同作用

Understanding the synergy of energy storage and renewables in decarbonization via random forest-based explainable AI

Zili Chen · Zhaoyuan Wu · Lanyi Wei · Linyan Yang 等6人 · Applied Energy · 2025年1月 · Vol.390

摘要 可再生能源(RE)与储能系统(ESS)的协调发展对于低碳转型至关重要。除了最优规划方案外,理解规划结果背后的深层原因对于提升决策透明度与可靠性同样关键。本研究探讨了在不同脱碳阶段中可再生能源与中长期储能(MTES)之间协同关系的演变过程,提出了一种可解释的分析框架,用于归因并分析影响规划结果的关键因素。通过采用随机森林(Random Forest, RF)方法,该框架识别出在不同边界条件下(如碳排放限额、资源禀赋和经济约束)驱动可再生能源—储能协同效应的核心因素,从而深入揭示时间与空间因素...

解读: 该研究对阳光电源储能规划具有重要指导意义。研究揭示长时储能(LDES>100h)在新能源富集区域的季节性平衡价值,与PowerTitan液流储能系统的应用场景高度契合;短时储能在火电主导区域应对日内波动的需求,可通过ST系列PCS的快速响应能力实现。随机森林可解释性框架可集成至iSolarCloud...

储能系统技术 电池管理系统BMS SiC器件 ★ 5.0

AM-MFF:一种基于注意力机制的多特征融合框架用于鲁棒且可解释的锂离子电池健康状态估计

AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation

Si-Zhe Chen · Jing Liu · Haoliang Yuan · Yibin Tao 等6人 · Applied Energy · 2025年1月 · Vol.381

健康状态(SOH)是电池管理系统(BMS)中的一个关键参数。利用多种数据源可有效提升端到端SOH估计的性能。然而,现有的基于多维特征的方法未能充分挖掘不同数据源之间的内在关联。同时,大多数方法缺乏可解释性,并忽视了噪声带来的不利影响。本研究提出了一种基于注意力机制的多特征融合框架(AM-MFF),以实现鲁棒且可解释的SOH估计。AM-MFF结合了卷积神经网络(CNN)和注意力机制(AM)的优势,能够高效提取并融合健康特征,从而全面感知电池老化信息。该框架将两个运行阶段的数据作为输入,并通过两个独...

解读: 该AM-MFF锂电池SOH估算框架对阳光电源储能系统具有重要应用价值。其多特征融合与注意力机制可直接集成至ST系列PCS和PowerTitan储能系统的BMS中,提升电池健康状态预测精度和抗噪性能。多输入容错设计确保单传感器故障时系统仍可靠运行,符合大规模储能安全需求。注意力分数的可解释性有助于iS...

光伏发电技术 户用光伏 微电网 深度学习 ★ 5.0

基于混合深度学习的屋顶光伏供给与农宅负荷不匹配分析:数据降维与可解释负荷模式挖掘

Mismatch analysis of rooftop photovoltaics supply and farmhouse load: Data dimensionality reduction and explicable load pattern mining via hybrid deep learning

Ding Gao · Yuan Zhi · Xing Rong · Xudong Yang · Applied Energy · 2025年1月 · Vol.377

摘要 建立以屋顶光伏(PV)为基础的新型电力系统有助于推动中国农村地区的能源转型。光伏供给与农村家庭用电需求之间不匹配的研究,对光伏微电网系统的广泛推广至关重要。目前,农村地区典型负荷模式(TLPs)缺乏准确的特征刻画方法,且现有的不匹配评估方法未充分考虑光伏弃电问题。因此,本研究提出一种基于混合深度学习的分析框架,用于量化全天时段内光伏发电与典型负荷模式之间的短期不匹配程度,并将其应用于真实农村地区数据集。本研究采用变分自编码器(VAE)模型对高分辨率负荷数据进行降维与特征提取,并与传统方法进...

解读: 该研究对阳光电源户用光伏微电网解决方案具有重要价值。VAE深度学习模型可集成至iSolarCloud平台,实现农村负荷模式精准识别与PV出力失配预测。研究揭示的三类典型负荷曲线可优化SG系列逆变器的MPPT策略,结合ST系列储能PCS动态调节充放电功率,降低弃光率。基尼系数量化方法为PowerTit...