← 返回
光伏发电技术 储能系统 ★ 5.0

基于多域协作与协变量交互的严重数据缺失下鲁棒光伏预测

Robust photovoltaic forecasting under severe data missingness via multi-domain collaboration and covariate interaction

作者 Ke Yana · Jian Liua · Jiazhen Zhang · Fan Yangb · Yuan Gaoc · Yang Dud
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 401 卷
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Evaluating whether covariate inclusion enhances model forecasting performance.
语言:

中文摘要

摘要 高质量的光伏发电(PV)功率预测对于高效的能源管理和可靠的电网集成至关重要,然而实际应用中的数据常常面临目标变量和辅助变量的大范围缺失问题。为应对这一挑战,本文提出MDCTL-MCI,一种具备缺失感知能力的预测框架,该框架联合利用信号分解、多尺度协变量交互以及多域协同迁移学习。首先,采用多元奇异谱分析(MSSA)对不完整时间序列进行去噪与重构,在无需显式填补的情况下增强潜在的时间结构特征。接着,引入轻量级的多尺度协变量交互(MCI)模块,建模重构后的光伏功率、全球水平辐照度、直接法向辐照度及总太阳辐照度在不同时间分辨率下的相互关系,从而同时捕捉局部波动与全局趋势。最后,通过一种多源域协同迁移学习策略,聚合多个光伏站点的知识构建全局模型,并利用各站点少量高质量的经MSSA处理后的样本对该模型进行微调。在微调过程中冻结除输出层外的所有参数,使MDCTL-MCI能够高效适应本地数据的异质性。在中国四个光伏电站上的大量实验结果表明,与基线方法相比,所提方法在完整数据条件下的平均预测精度提高了10.5%,在多种数据缺失场景下精度提升达15.3%。

English Abstract

Abstract High-quality photovoltaic (PV) power forecasting is essential for efficient energy management and reliable grid integration, yet real-world data are often plagued by extensive missingness in both target and auxiliary variables. To address this challenge, we propose MDCTL-MCI, a missingness-aware forecasting framework that jointly leverages signal decomposition, multi-scale covariate interaction, and multi-domain collaborative transfer learning. First, multivariate singular spectrum analysis (MSSA) denoises and reconstructs incomplete time series, enhancing underlying temporal structures without explicit imputation. Next, a lightweight multiscale covariate interaction (MCI) module models interactions among reconstructed PV power, global horizontal irradiance, direct normal irradiance, and total solar irradiance at varying temporal resolutions, capturing both local fluctuations and global trends. Finally, a multi-source domain collaborative transfer learning strategy aggregates knowledge from multiple PV sites to form a global model, which is then fine-tuned on a small set of high-quality, MSSA-processed samples at each site. By freezing all but the output layer during fine-tuning, MDCTL-MCI adapts efficiently to local data heterogeneity. Extensive experiments on four Chinese PV installations reveal that, compared to baseline methods, the proposed method improves average accuracy by 10.5 % under complete data conditions and by 15.3 % under various missing data scenarios.
S

SunView 深度解读

该多域协同光伏预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。针对实际电站数据缺失问题,MSSA信号重构与多尺度协变量交互建模可直接集成至SG系列逆变器的MPPT优化算法,提升发电功率预测精度10.5%-15.3%。多站点迁移学习策略可赋能PowerTitan储能系统的充放电调度,通过全局模型协同优化提升电网友好性。该框架的轻量化设计适配边缘侧部署,可增强ST系列PCS的预测性维护能力,降低因数据质量导致的调度偏差,支撑GFM控制策略的鲁棒性。