← 返回
光伏发电技术 户用光伏 微电网 深度学习 ★ 5.0

基于混合深度学习的屋顶光伏供给与农宅负荷不匹配分析:数据降维与可解释负荷模式挖掘

Mismatch analysis of rooftop photovoltaics supply and farmhouse load: Data dimensionality reduction and explicable load pattern mining via hybrid deep learning

作者 Ding Gao · Yuan Zhi · Xing Rong · Xudong Yang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 光伏发电技术
技术标签 户用光伏 微电网 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A framework for intra-day short-term mismatch analysis of photovoltaic-load is proposed.
语言:

中文摘要

摘要 建立以屋顶光伏(PV)为基础的新型电力系统有助于推动中国农村地区的能源转型。光伏供给与农村家庭用电需求之间不匹配的研究,对光伏微电网系统的广泛推广至关重要。目前,农村地区典型负荷模式(TLPs)缺乏准确的特征刻画方法,且现有的不匹配评估方法未充分考虑光伏弃电问题。因此,本研究提出一种基于混合深度学习的分析框架,用于量化全天时段内光伏发电与典型负荷模式之间的短期不匹配程度,并将其应用于真实农村地区数据集。本研究采用变分自编码器(VAE)模型对高分辨率负荷数据进行降维与特征提取,并与传统方法进行对比;此外,采用k-中心点(k-medoids)聚类方法识别典型负荷模式,并利用决策树提升结果的可解释性。研究结果表明:(1)VAE模型在公共数据集和实测数据集上均表现出优越的降维与特征提取能力,相较于其他模型能更有效地重构峰值负荷;(2)在农村数据集中识别出三类典型负荷模式,其中户外日平均湿球温度是主要影响因素;(3)三类典型负荷模式与光伏发电之间的不匹配程度存在显著差异,洛伦兹曲线与基尼系数能够有效量化光伏发电与典型负荷模式之间的不匹配程度。所提出的分析框架为优化农村地区光伏微电网系统设计以及制定需求侧响应策略提供了理论支持。

English Abstract

Abstract Establishing a new type of electricity system based on rooftop photovoltaics (PV) can facilitate the energy transition in rural China. Research on the mismatch between the PV supply and rural household demand is vital to the widespread adoption of PV microgrid systems . Currently, typical load patterns (TLPs) in rural areas lack accurate characterization and mismatch assessment methods disregard PV curtailment . Therefore, this study proposes a hybrid deep learning-based analytical framework to quantify short-term mismatches between PV power generation and TLPs throughout the day and applies it to a real rural dataset. This study employs the variational autoencoder (VAE) model for dimensionality reduction and feature extraction of high-resolution load data and compares it with traditional methods. In addition, we employed the k-medoids method to uncover TLPs and utilized decision trees to enhance interpretability. The results show that (1) The VAE model exhibits superior dimensionality reduction and feature extraction capabilities on both public and measured datasets and compared to other models, it can reconstruct peak loads more effectively. (2) Three types of TLPs were identified within the rural dataset, with the outdoor average daily wet-bulb temperature being the major influencing factor. (3) Significant differences existed in the mismatch levels between the three types of TLPs and PV power generation. The Lorenz curves and Gini coefficients can effectively quantify the mismatch between PV power generation and TLPs. The proposed framework provides theoretical support for optimizing PV microgrid systems design in rural areas and developing demand-side response strategies.
S

SunView 深度解读

该研究对阳光电源户用光伏微电网解决方案具有重要价值。VAE深度学习模型可集成至iSolarCloud平台,实现农村负荷模式精准识别与PV出力失配预测。研究揭示的三类典型负荷曲线可优化SG系列逆变器的MPPT策略,结合ST系列储能PCS动态调节充放电功率,降低弃光率。基尼系数量化方法为PowerTitan储能系统容量配置提供理论依据,支撑需求侧响应策略开发。该框架可增强阳光电源农村微电网智能运维能力,推动户用光储一体化系统在乡村能源转型中的规模化应用。