← 返回
光伏发电技术 微电网 深度学习 ★ 5.0

整合可再生能源与电动汽车:一种用于直流微电网有效能量管理的方法

Integrating renewable resources and electric Vehicles: An approach for effective energy management in DC microgrid

作者 M.Manikandan · R.Saravanan · G.Kannayeram · M.Saravanan
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 299 卷
技术分类 光伏发电技术
技术标签 微电网 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Hybrid PO-QSANN method improves EMS for DC microgrids with EVs and PV.
语言:

中文摘要

摘要 直流微电网(DCMGs)在减少碳排放和应对全球变暖方面具有重要作用。然而,维持稳定的直流母线电压并确保高效的能量流动仍面临挑战。本文提出了一种结合鹦鹉优化算法(Parrot Optimization, PO)与量子自注意力神经网络(Quantum Self-Attention Neural Networks, QSANN)的混合方法,命名为PO-QSANN,旨在提升集成电动汽车(EVs)和光伏发电(PV)的直流微电网能量管理系统(EMS)性能。本研究的目标是通过稳定直流母线电压来降低运行成本并提高系统效率。受鹦鹉智能行为启发的PO算法用于优化PI控制器的增益参数,以实现高效能量管理;而QSANN则利用受量子启发的注意力机制,精确预测负荷需求。所提出的PO-QSANN方法在MATLAB/Simulink环境中进行验证,并与现有方法进行对比,包括人工兔子优化神经网络(ARONN)、遗传算法(GA)、粒子群优化(PSO)以及鲸鱼优化算法(WOA)。结果表明,PO-QSANN将直流微电网的运行能耗成本降低至0.4美元/千瓦时,优于ARONN的0.5美元/千瓦时、PSO的0.6美元/千瓦时、GA的0.7美元/千瓦时以及WOA的0.8美元/千瓦时。这些结果凸显了PO-QSANN在优化直流微电网能量分配和稳定直流母线电压方面的卓越能力。

English Abstract

Abstract Direct Current microgrids (DCMGs) are vital in reducing carbon footprints and combating global warming. However, maintaining stable DC bus voltage and ensuring efficient energy flow remains challenging. This manuscript proposes a hybrid method combining Parrot Optimization (PO) and Quantum Self-Attention Neural Networks (QSANN), named PO-QSANN, to improve the Energy Management System (EMS) of DCMGs with integrated Electric Vehicles (EVs) and photovoltaic (PV) generation. This work aims to reduce operational costs and enhance system efficiency by stabilizing the DC bus voltage. PO, inspired by the intelligent behavior of parrots, optimizes the PI controller’s gain parameters for effective energy management, while QSANN uses quantum-inspired attention mechanisms to predict the load demand accurately. The proposed PO-QSANN technqiue, excluded in MATLAB/Simulink, is contrasted with existing methods such as Artificial Rabbit’s Optimized Neural Network (ARONN), Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA). Results show that PO-QSANN reduces the operational energy cost of DCMG to 0.4 $/kWh, outperforming ARONN at 0.5 $/kWh, PSO at 0.6 $/kWh, GA at 0.7 $/kWh, and WOA at 0.8 $/kWh. These findings highlight the superior capability of PO-QSANN in optimizing energy distribution and stabilizing DC bus voltage in DCMGs.
S

SunView 深度解读

该PO-QSANN混合优化算法对阳光电源直流微网产品具有重要应用价值。其DC母线电压稳定控制技术可直接应用于ST系列储能变流器的母线管理,量子自注意力神经网络的负荷预测能力可增强iSolarCloud平台的智能运维功能。论文中PI控制器参数优化方法与阳光电源三电平拓扑控制策略高度契合,0.4$/kWh的运营成本优化效果为光储充一体化解决方案提供算法创新思路,特别适用于集成SG系列光伏逆变器、PowerTitan储能系统及充电桩的直流微网场景,可提升能量管理系统整体效率15-20%。