找到 6 条结果 · Applied Energy

排序:
风电变流技术 ★ 5.0

一种考虑台风灾害的韧性导向型海上风电场与输电网络协同规划多场景分布鲁棒模型

A multi-scenario distributionally robust model for resilience-oriented offshore wind farms and transmission network integrated planning considering typhoon disasters

Yang Yuan · Heng Zhang · Shenxi Zhang · Haozhong Cheng 等7人 · Applied Energy · 2025年1月 · Vol.392

现有韧性导向型海上风电场与输电网络协同规划(ROWF&TNIP)模型在刻画台风灾害期间风力发电和电网故障相关不确定性方面缺乏细致描述,且在提升系统韧性时往往表现出较强的保守性。为克服上述局限,本文提出一种考虑台风灾害的多场景分布鲁棒ROWF&TNIP模型。该模型综合考虑正常运行场景(NOS)和台风灾害场景(TDS)下风力发电与电网故障的多重不确定性,以较低的保守程度实现韧性的提升。首先,构建了针对海上风电场(OWF)出力与电网故障的多场景分布鲁棒不确定性集合:基于条件风险价值(CVaR)的多场景...

解读: 该海上风电韧性规划模型对阳光电源ST系列储能系统和智能运维平台具有重要应用价值。论文提出的多场景分布鲁棒优化方法可应用于PowerTitan储能系统的台风灾害应对策略,通过CVaR不确定性集建模提升极端天气下源网荷协调能力。差异化加固模型与预防性机组组合策略可集成至iSolarCloud平台,实现海...

光伏发电技术 储能系统 ★ 5.0

基于预测的风-光互补电解制氢系统的设计与优化调度

Design and optimal scheduling of a forecasting-based wind-and-photovoltaic complementary electrolytic hydrogen production system

Weichao Dong · Hexu Sun · Zheng Li · Huifang Yang · Applied Energy · 2025年1月 · Vol.392

摘要 氢能可有效缓解能源短缺并减少环境污染。本文首次设计了一个完整的风能与光伏(PV)互补制氢系统,包括高效的发电系统模型、精确的预测模型、优良的优化调度策略以及高效的催化剂。该离网型互补发电系统在直流母线上实现。提出了一种混合预测模型,结合长短期记忆网络(LSTM)、分位数回归(QR)和正则藤copula方法。LSTM与QR相结合可获得边缘概率密度函数(PDF)。利用正则藤copula建立风能与光伏能源之间的相关性,并将边缘PDF与其相关性结构结合,实现对风能和光伏出力的联合预测。提出一种基于...

解读: 该风光制氢系统对阳光电源ST系列储能变流器和SG光伏逆变器具有重要应用价值。文中直流母线离网架构可结合我司1500V系统和三电平拓扑技术,提升功率转换效率。LSTM-DRL多目标优化调度策略可集成至iSolarCloud平台,实现风光出力预测与氢储能协同控制。研究的3.1美元/kg制氢成本为Powe...

光伏发电技术 储能系统 深度学习 ★ 5.0

基于卫星图像纹理特征与迁移学习的区域光伏功率预测优化高效方法

An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning

Yang Xi · Jianyong Zheng · Fei Mei · Gareth Taylor 等5人 · Applied Energy · 2025年1月 · Vol.385

准确高效的区域光伏发电功率预测对于提升光伏电力供应的稳定性并扩大其市场份额至关重要。近年来的研究进展已将卫星与地面观测数据的特征相结合,基于混合神经网络的模型展现出优异的预测性能。然而,仍存在若干挑战:直接从卫星图像中提取的空间特征往往缺乏细节,且大多数现有预测方法需要大量电力数据样本。因此,在云量变化速率较高的情况下,预测精度易受相位滞后的影响,同时由于区域光伏装置数量庞大且分布分散,计算负担也显著增加。为解决上述问题,本研究提出一种创新的时空特征,该特征将从卫星图像重构的纹理特征(TFs)与...

解读: 该区域光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过卫星图像纹理特征与迁移学习结合,可显著提升SG系列逆变器集群的功率预测精度(RMSE提升72%)并降低相位滞后,特别适用于分布式光伏电站管理。该算法计算效率提升10倍,可与ST储能系统协同优化充放电策略,减少云层...

光伏发电技术 ★ 5.0

水风光混合系统中现有水电站扩容优化的解析方法:以雅砻江流域为例

Analytical method for optimizing capacity expansion of existing hydropower plants in hydro-wind-photovoltaic hybrid system: A case study in the Yalong River basin

Chen Wu · Pan Liu · Qian Cheng · Zhikai Yang 等11人 · Applied Energy · 2025年1月 · Vol.383

摘要 水电可通过构建水-风-光混合能源系统,有效整合具有间歇性的风电和光伏(PV)发电。随着风电和光伏电站规模的不断扩大,扩大水电装机容量变得尤为关键。然而,传统的扩容数值方法需要高时间分辨率的输入数据以及复杂的模拟计算。为解决这一问题,本文提出一种无需高分辨率输入数据的解析方法,用于推导水电站最优扩容规模,便于实际应用并支持敏感性分析。首先,基于历史运行数据,分别采用多项式函数和线性函数对水电出力及风电-光伏弃电率随水电扩容规模的变化关系进行估计;其次,结合净现值法,建立考虑总发电量(包括水电...

解读: 该水风光混合系统容量优化方法对阳光电源具有重要参考价值。研究揭示的弃电率与容量扩展关系,可指导我们ST系列储能系统在水风光互补场景的容量配置策略。文中敏感性分析方法(电价敏感度为运维成本11倍)可应用于PowerTitan储能电站的经济性评估模型。特别是无需高时间分辨率数据的解析法,可集成到iSol...

风电变流技术 储能系统 强化学习 ★ 5.0

风电场在中长期滚动交易中的策略性投标:一种双层多智能体深度强化学习方法

Strategic bidding of wind farms in medium-to-long-term rolling transactions: A bi-level multi-agent deep reinforcement learning approach

Yi Zheng · Jian Wang · Chengmin Wang · Chunyi Huang 等6人 · Applied Energy · 2025年1月 · Vol.383

摘要 随着可再生能源在电力市场中渗透率的不断提高,边际电价受到抑制,给风电生产商的盈利能力带来了挑战。为此,有效的中长期(MLT)滚动交易能够对冲现货市场价格风险,提升盈利水平。然而,传统的投标方法往往难以捕捉风电出力及交易动态在较长时间跨度内的复杂不确定性。本文提出了一种专为优化风电中长期滚动交易而设计的双层多智能体深度强化学习(DRL)方法。该方法创新性地将Black–Scholes模型与Hamiltonian函数相结合,构建了一个最优决策框架,能够在短期投标效率与长期战略定位之间实现平衡。...

解读: 该深度强化学习竞价策略对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过双层多智能体优化框架,可提升风储联合系统在中长期电力市场的收益能力,有效对冲现货价格风险。其时空建模技术可集成至iSolarCloud平台,实现储能参与市场交易的智能决策,优化充放电策略。结合阳光电...

光伏发电技术 深度学习 ★ 5.0

DEST-GNN:一种用于多站点小时内光伏功率预测的双探索时空图神经网络

DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting

Yanru Yang · Yu Liu · Yihang Zhang · Shaolong Shu 等5人 · Applied Energy · 2025年1月 · Vol.378

准确的光伏发电(PV)功率预测对于电网实时平衡和储能系统优化至关重要。然而,由于光伏发电具有间歇性和波动性,实现高精度的光伏功率预测仍然是一项挑战。本文提出了一种用于多站点小时内光伏功率预测的新方法。与当前独立预测每个光伏电站功率的方法不同,我们通过考虑各光伏电站之间固有的时空相关性,同时预测所有站点的发电功率,并设计了一种新型图神经网络模型——DEST-GNN。在DEST-GNN中,采用无向图来表示这些光伏电站之间的依赖关系:每个光伏电站由一个节点表示,任意两个电站之间的时空相关性则由它们之间...

解读: 该多站点小时内光伏功率预测技术对阳光电源SG系列逆变器和ST储能系统具有重要应用价值。DEST-GNN通过时空图神经网络捕捉多电站关联性,可集成至iSolarCloud平台实现区域级功率预测,优化储能系统PowerTitan的充放电策略。其稀疏注意力机制可提升GFM/GFL控制算法的前瞻性调度能力,...