找到 5 条结果 · Applied Energy

排序:
储能系统技术 储能系统 SiC器件 ★ 5.0

揭示钠化石墨负极主导的NFPP/HC软包电池热失控机制

Uncovering Sodiated HC dominated thermal runaway mechanism of NFPP/HC pouch battery

Wei Li · Shini Lin · Honghao Xi · Yuan Qin 等8人 · Applied Energy · 2025年1月 · Vol.391

摘要 钠离子电池(SIBs)因其资源丰富和优异的电化学性能,被认为是大规模储能系统(LSESS)中极具前景的技术。然而,SIBs的安全性鲜有讨论,而热稳定性对其电池应用至关重要,尤其是在LSESS中的应用。本研究揭示了由钠化负极产热主导的Na₃Fe₂(PO₄)(P₂O₇)||硬碳(NFPP/HC)软包电池的热失控机制。基于电池和材料层面的产热分析表明,硬碳(HC)与电解液之间的放热反应在100 °C时即开始发生(NFPP与电解液的放热反应发生在约230 °C),且负极与电解液的反应释放大量热量,...

解读: 该钠离子电池热失控机理研究对阳光电源PowerTitan等大规模储能系统安全设计具有重要参考价值。研究揭示硬碳负极在100°C即开始放热反应,远低于正极材料230°C,且隔膜熔点接近热失控触发温度。这为ST系列PCS的热管理策略优化提供依据:需在电池簇级别加强温度监测,设置更严格的100°C预警阈值...

储能系统技术 储能系统 SiC器件 地面光伏电站 ★ 5.0

用于交流最优潮流的高效计算数据合成:融合物理信息神经网络求解器与主动学习

Computationally efficient data synthesis for AC-OPF: Integrating Physics-Informed Neural Network solvers and active learning

Jiahao Zhang · Ruo Peng · Chenbei Lu · Chenye Wu · Applied Energy · 2025年1月 · Vol.378

摘要 本研究针对在发布保护隐私的交流最优潮流(AC Optimal Power Flow, AC-OPF)运行数据时面临的隐私性、实用性与效率性挑战展开研究。传统方法在差分隐私(Differential Privacy, DP)框架下向运行数据(即负荷需求数据和调度配置文件)中注入噪声,但此类操作常导致数据违反物理约束,产生不现实且不可行的结果,从而降低数据的实用性。尽管基于AC-OPF求解器的双层后处理优化能够强制实现物理可行性,但由于后处理目标与AC-OPF本身目标之间存在偏差,仍会导致结果...

解读: 该研究提出的物理信息神经网络(PINN)求解AC-OPF方法,对阳光电源储能系统(ST系列PCS、PowerTitan)和光伏逆变器(SG系列)的智能调度具有重要价值。通过主动学习加速优化计算,可应用于iSolarCloud平台的实时能量管理系统,在保护用户隐私前提下实现多站点协同优化。该技术能显著...

储能系统技术 储能系统 强化学习 ★ 5.0

基于对抗性模仿强化学习的混合储能电动汽车能量管理

Imitation reinforcement learning energy management for electric vehicles with hybrid energy storage system

Weirong Liu · Pengfei Yao · Yue Wu · Lijun Duan 等6人 · Applied Energy · 2025年1月 · Vol.378

深度强化学习已成为电动汽车能量管理的一种有前景的方法。然而,深度强化学习依赖大量试错训练才能获得近似最优性能。为此,本文提出一种面向混合储能系统的电动汽车对抗性模仿强化学习能量管理策略,以最小化电池容量损耗成本。首先,利用动态规划在多种标准驾驶条件下生成专家知识,用于引导强化学习的探索过程,该专家知识表示为最优功率分配映射。其次,在早期模仿阶段,通过对抗网络使强化学习智能体的动作快速逼近最优功率分配映射。再次,根据对抗网络中判别器的输出设计动态模仿权重,促使智能体在在线驾驶条件下逐步过渡到自主探...

解读: 该对抗模仿强化学习策略对阳光电源混合储能系统具有重要应用价值。可应用于ST系列PCS的电池-超级电容混合储能优化,通过专家知识引导的强化学习加速训练42.6%,降低电池容量损耗成本5.1%-12.4%。技术可集成至iSolarCloud平台实现在线工况自适应功率分配,延长PowerTitan储能系统...

光伏发电技术 ★ 5.0

钙钛矿材料与太阳能电池的数字化制造

Digital manufacturing of perovskite materials and solar cells

Zixuan Wangabc1 · Zijian Chenbcd1 · Boyuan Wangbc1 · Chuang Wu 等12人 · Applied Energy · 2025年1月 · Vol.377

摘要 与已发展了半个世纪的晶硅电池相比,钙钛矿太阳能电池(PSCs)的光伏转换效率在短短15年内已超过26%,成为当前备受关注的研究热点。然而,传统研究方法在应对钙钛矿材料(PVKs)成分多样、合成复杂以及需精确调控性能等方面面临诸多挑战。本综述系统阐述了钙钛矿材料在数字化制造方面的最新研究进展,重点涵盖实验室自动化、数据驱动的理性设计、高通量实验以及机器学习(ML)算法等方向。首先,论述了实验室自动化在显著提升实验效率与可重复性方面的重要作用;其次,强调了数据驱动方法在指导钙钛矿材料及器件理性...

解读: 钙钛矿电池数字化制造技术对阳光电源光伏逆变器产品线具有前瞻价值。该技术通过机器学习和高通量实验加速新型光伏材料开发,其26%转换效率已接近晶硅电池。阳光电源SG系列逆变器可提前布局钙钛矿电池适配性研究,针对其独特的IV特性优化MPPT算法;iSolarCloud平台可集成数据驱动方法,实现钙钛矿组件...

储能系统技术 储能系统 SiC器件 深度学习 ★ 5.0

基于物理信息的积分神经网络用于溶剂法燃烧后CO2捕集过程的动态建模

Physics informed integral neural network for dynamic modelling of solvent-based post-combustion CO2 capture process

Peng Sh · Cheng Zheng · Xiao Wu · Jiong Shen · Applied Energy · 2025年1月 · Vol.377

摘要 溶剂法燃烧后碳捕集(PCC)是实现能源和工业领域大规模脱碳最有前景的技术。然而,该过程的复杂特性和高能耗阻碍了PCC在复杂电力市场中的高效灵活运行。PCC系统的成功运行优化高度依赖于对过程的动态建模,而采用先进的数据驱动方法已成为研究热点。目前广泛使用的数据驱动动态建模方法未将PCC过程的物理机理信息融入模型中,导致模型稳定性不足。物理信息神经网络(PINNs)通过融合数据与物理信息,提供了一种创新的建模方法。然而,其在PCC过程动态建模中的应用仍面临重大挑战。为此,本文基于带外生输入的非...

解读: 该物理信息神经网络(PIINN)动态建模技术对阳光电源储能系统具有重要应用价值。碳捕集系统的复杂非线性动态特性与PowerTitan储能系统在电力市场中的灵活调度需求高度相似。PIINN方法通过平衡点稳定性约束保证模型可靠性的思路,可借鉴应用于ST系列PCS的宽工况运行建模,提升GFM/GFL控制策...