← 返回
光伏发电技术 ★ 5.0

钙钛矿材料与太阳能电池的数字化制造

Digital manufacturing of perovskite materials and solar cells

语言:

中文摘要

摘要 与已发展了半个世纪的晶硅电池相比,钙钛矿太阳能电池(PSCs)的光伏转换效率在短短15年内已超过26%,成为当前备受关注的研究热点。然而,传统研究方法在应对钙钛矿材料(PVKs)成分多样、合成复杂以及需精确调控性能等方面面临诸多挑战。本综述系统阐述了钙钛矿材料在数字化制造方面的最新研究进展,重点涵盖实验室自动化、数据驱动的理性设计、高通量实验以及机器学习(ML)算法等方向。首先,论述了实验室自动化在显著提升实验效率与可重复性方面的重要作用;其次,强调了数据驱动方法在指导钙钛矿材料及器件理性设计与优化中的应用价值;随后,总结了高通量实验技术在实现钙钛矿材料可控合成中的辅助作用;此外,概述了机器学习算法处理大规模数据集的能力,该能力有助于发现关键设计参数并优化器件性能。最后,本文对当前面临的挑战与未来发展前景进行了总结讨论,强调仍需持续推进钙钛矿材料数字化制造技术的发展,以加速其在材料配方与工艺开发方面的突破,并满足不断演进的应用需求。

English Abstract

Abstract Compared with crystalline silicon cells that have been developed for half a century, the photovoltaic conversion efficiency of perovskite solar cells (PSCs) has exceeded 26% in just 15 years, making it a prominent research topic. However, traditional approaches face the challenges of the diverse compositions, complex synthesis, and precise property modulations posed by perovskites (PVKs). In this review, we provide a detailed examination of the recent advancements in the digital manufacturing of PVKs, with a primary focus on laboratory automation, data-driven rational design, high-throughput experiments, and machine learning (ML) algorithms. Firstly, the contributions of the laboratory automation in significantly bolstering experimental efficiency and repeatability are declared. Secondly, the application of data-driven methods that guide rational design and optimization of PVKs and PSCs is highlighted. Subsequently, the assistance of high-throughput experimental techniques in the controllable synthesis of PVKs is summarized. Moreover, the capability of ML algorithms to process large-scale datasets, which enables the discovery of design parameters and the optimization of performance, is outlined. Finally, we conclude with a discussion on challenges and prospects, emphasizing the ongoing need for continued advancements in digital manufacturing of PVKs to accelerate breakthroughs in the formulation and process of PVKs and meet the demands of evolving applications.
S

SunView 深度解读

钙钛矿电池数字化制造技术对阳光电源光伏逆变器产品线具有前瞻价值。该技术通过机器学习和高通量实验加速新型光伏材料开发,其26%转换效率已接近晶硅电池。阳光电源SG系列逆变器可提前布局钙钛矿电池适配性研究,针对其独特的IV特性优化MPPT算法;iSolarCloud平台可集成数据驱动方法,实现钙钛矿组件性能预测与衰减建模;ST储能系统可探索钙钛矿-储能一体化方案。建议跟踪该技术工业化进程,为下一代光伏产品做技术储备。