找到 5 条结果 · Applied Energy
MFFDM-WLS:一种基于多粒度特征的时序分层风速时间序列一致性预测方法
MFFDM-WLS: A multi-granularity feature-based coherent forecasting method for temporal hierarchical wind speed time series
Yun Wang · Xiaocong Duana · Fan Zhang · Guang Wua 等7人 · Applied Energy · 2025年1月 · Vol.400
摘要 风能因其清洁和可持续的特性,已成为全球能源系统的重要组成部分。然而,风速的间歇性和波动性给风电出力带来了显著的不确定性,对电网并网造成了挑战。此外,与单一粒度预测相比,多粒度风速预测能够提供更丰富的信息,更有利于风电场的运行与规划。因此,为进一步提高风速预测的准确性与可靠性,并获得满足分层一致性的多粒度预测结果,本文提出了一种针对时序分层风速时间序列的基于多粒度特征的一致性预测方法MFFDM-WLS。首先,提出一种基于多粒度特征融合的深度模型(MFFDM),用于生成基础预测值。MFFDM采...
解读: 该多粒度风速预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过时间层级一致性预测,可优化iSolarCloud平台的预测性维护算法,提升风储协同控制精度。多粒度特征融合方法可应用于GFM/GFL控制策略的自适应切换决策,增强电网友好型并网能力。概率预测结果可为E...
半透明光伏建筑一体化/热电联产系统与空气处理协同运行用于发电及冷热互补利用:能量与采光性能评估
Semi-transparent BIPV/T System's synergistic operation with air treatment for electricity generation and complementary cold-heat utilization: Assessment of energy and daylight performance
Yayun Tang · Chengyan Zhang · Jie Ji · Hao Xi · Applied Energy · 2025年1月 · Vol.383
摘要 将光伏(PV)组件集成到建筑设计中不仅能够提升建筑美学,还有助于实现可持续的电力生产。然而,建筑集成光伏(BIPV)系统仍面临若干挑战,包括效率欠佳、废热未被有效利用、眩光问题以及空调系统高能耗等。本研究通过半透明BIPV/T幕墙(CW)系统与空气处理过程的协同运行,旨在解决上述问题,并提升建筑的热性能、电性能及采光性能。研究方法结合了基于能量平衡方程建立的热学与电学模型,以及采用光线追踪原理的光学模型。这些模型被实现在一个集成了Matlab、TRNSYS和DesignBuilder的动态...
解读: 该BIPV/T协同系统研究对阳光电源光储一体化方案具有重要启示。系统通过主动通风降低组件温度9.03°C、提升发电效率0.26%的技术路径,可与SG系列逆变器的MPPT优化算法协同,实时追踪温度变化调整工作点。建筑侧7.87%的综合能耗削减潜力,为ST系列储能PCS与HVAC系统深度耦合提供应用场景...
基于解聚合策略的虚拟电厂异构柔性资源优化协同调度
A De-aggregation strategy based optimal co-scheduling of heterogeneous flexible resources in virtual power plant
Zixuan Zheng · Jie Li · Xiaoming Liu · Chunjun Huang 等10人 · Applied Energy · 2025年1月 · Vol.383
摘要 虚拟电厂(VPP)作为一种有效解决方案,可在包含多种类型柔性资源(FRs)的并网型微电网中维持内部功率平衡,并参与外部削峰辅助服务。然而,随着不同类型柔性资源在响应行为上的特征异质性日益显著,以及其在削峰过程中的耦合关系,给VPP调度指令的精确分解带来了挑战。本文提出一种基于离散选择模型和特征匹配方法的解聚合策略,以动态排序柔性资源的响应顺序,同时优化VPP的削峰能力。首先,对异构特征进行精细化建模,以刻画多类型柔性资源满足并网微电网调度需求(SDGM)的响应能力。随后,构建特征差异量化模...
解读: 该VPP解聚优化策略对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。通过异构资源特征建模和动态响应排序,可提升储能系统参与电网调峰辅助服务的精准度。结合iSolarCloud平台的预测性维护能力,能够优化多类型柔性资源协同调度,降低70%调峰偏差。该技术可增强阳光电源微网解决...
基于贝叶斯优化算法与二次分解的误差校正深度Autoformer模型在光伏发电预测中的应用
An error-corrected deep Autoformer model via Bayesian optimization algorithm and secondary decomposition for photovoltaic power prediction
Jie Chen · Tian Peng · Shijie Qian · Yida Ge 等7人 · Applied Energy · 2025年1月 · Vol.377
准确的光伏发电功率预测对于电网的稳定运行和合理调度至关重要。然而,由于光伏发电具有不稳定性,其功率预测仍面临巨大挑战。为此,本文提出一种结合二次分解、贝叶斯优化与误差校正机制的Autoformer模型用于光伏发电功率预测。为降低数据复杂性并充分提取特征,采用了两种分解方法:首先利用经验模态分解(EMD)对光伏功率序列进行初级分解;然后引入样本熵(SE)衡量各分量的复杂度,并对复杂度最高的分量采用变分模态分解(VMD)进行二次分解。其次,构建基于贝叶斯优化算法优化的Autoformer模型,分别预...
解读: 该基于深度学习的光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过EMD-VMD二次分解和Autoformer模型可显著提升预测精度,可集成至SG系列逆变器的MPPT优化算法中,实现更精准的发电功率预测。结合ST系列储能PCS,该预测模型能优化储能系统充放电策略,提升...
一种基于神经网络的高效图像处理方法用于透明质子交换膜燃料电池中的水量化
An efficient neural-network-based image processing method for water quantification in a transparent proton exchange membrane fuel cell
Sai-Jie Cai · Mu-Chen Wang1 · Jun-Hong Chen · Zhuo Zhang 等6人 · Applied Energy · 2025年1月 · Vol.382
水管理和热管理对质子交换膜燃料电池的性能至关重要。本文设计了一种活性面积为25 cm²的透明单电池,用于在不同工况下表征水分布特性。在电池的设计与组装过程中,该方案克服了电池密封方面的技术挑战。通过神经网络对不同运行条件下录制的视频进行逐帧分析,实现了液态水的量化。为了进行对比分析,采用了阈值处理方法,并详细讨论了其优缺点。利用基于阈值处理结果生成的包含137帧的高质量训练集对神经网络进行训练。本研究探讨了温度、电压以及流场结构设计对水积累的影响。基于神经网络的语义分割方法在复杂工况下表现出优异...
解读: 该神经网络图像处理技术对阳光电源储能系统热管理具有重要借鉴价值。ST系列PCS和PowerTitan储能系统运行中的温度监测与水汽管理是关键挑战,文中基于语义分割的实时监测方法可应用于电池簇热失控预警。透明化设计理念启发iSolarCloud平台开发视觉诊断模块,通过热成像与AI识别实现储能柜内异常...