← 返回
光伏发电技术
★ 5.0
基于贝叶斯优化算法与二次分解的误差校正深度Autoformer模型在光伏发电预测中的应用
An error-corrected deep Autoformer model via Bayesian optimization algorithm and secondary decomposition for photovoltaic power prediction
| 作者 | Jie Chen · Tian Peng · Shijie Qian · Yida Ge · Zheng Wang · Muhammad Shahzad Nazir · Chu Zhang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel ESVD-BOA-Autoformer-EC model for PV power prediction is proposed. |
语言:
中文摘要
准确的光伏发电功率预测对于电网的稳定运行和合理调度至关重要。然而,由于光伏发电具有不稳定性,其功率预测仍面临巨大挑战。为此,本文提出一种结合二次分解、贝叶斯优化与误差校正机制的Autoformer模型用于光伏发电功率预测。为降低数据复杂性并充分提取特征,采用了两种分解方法:首先利用经验模态分解(EMD)对光伏功率序列进行初级分解;然后引入样本熵(SE)衡量各分量的复杂度,并对复杂度最高的分量采用变分模态分解(VMD)进行二次分解。其次,构建基于贝叶斯优化算法优化的Autoformer模型,分别预测各个分解后的分量,再将各分量的预测结果聚合,得到初步的光伏发电功率预测结果。最后,采用最小二乘支持向量机(LSSVM)对初步预测结果进行误差校正。实验采用中国杭州某光伏电站为期四个月的实际光伏发电数据集验证所提模型的有效性。实验结果表明,经过一次分解后的模型性能优于单一预测模型,而经过二次分解后预测精度显著提升。所提出的模型在不同季节的光伏发电功率预测中均表现出最优的预测性能,具有良好的鲁棒性。
English Abstract
Abstract Accurate PV power prediction is crucial for stable grid operation and rational dispatch. However, due to the instability of PV power generation , PV power prediction still has great challenges. Therefore, an Autoformer model based on secondary decomposition, Bayesian optimization and error correction for PV power prediction. In order to reduce the complexity of the data and fully extract the features, two decomposition methods are employed. First, empirical mode decomposition (EMD) is applied to decompose the PV power series at the first level. Then, the sample entropy (SE) is introduced to measure the complexity of each component, and the variational mode decomposition (VMD) is employed to implement secondary decomposition of the component with the highest complexity. Secondly, a Bayesian optimization algorithm enhanced Autoformer model is developed for predicting each component, and the predicted component results are aggregated to obtain preliminary PV power prediction results. Finally, the preliminary prediction results are error corrected using a least squares support vector machine . A four-month PV dataset from a PV power plant in Hangzhou, China is utilized to validate the effectiveness of the proposed model. The experimental results show that the model after primary decomposition is superior to the single model, and the prediction accuracy is substantially improved after secondary decomposition. The proposed model has the best prediction performance in predicting the PV power for different seasons, which shows good robustness.
S
SunView 深度解读
该基于深度学习的光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过EMD-VMD二次分解和Autoformer模型可显著提升预测精度,可集成至SG系列逆变器的MPPT优化算法中,实现更精准的发电功率预测。结合ST系列储能PCS,该预测模型能优化储能系统充放电策略,提升电网调度稳定性。贝叶斯优化方法可应用于PowerTitan储能系统的能量管理算法,降低预测误差对并网运行的影响,增强系统鲁棒性,支撑光储一体化解决方案的智能化升级。