← 返回
储能系统技术 储能系统 ★ 4.0

一种基于神经网络的高效图像处理方法用于透明质子交换膜燃料电池中的水量化

An efficient neural-network-based image processing method for water quantification in a transparent proton exchange membrane fuel cell

作者 Sai-Jie Cai · Mu-Chen Wang1 · Jun-Hong Chen · Zhuo Zhang · Pu He · Wen-Quan Tao
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 382 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 This paper establishes a neural-network to quantify water distribution of a transparent proton exchange membrane fuel cell
语言:

中文摘要

水管理和热管理对质子交换膜燃料电池的性能至关重要。本文设计了一种活性面积为25 cm²的透明单电池,用于在不同工况下表征水分布特性。在电池的设计与组装过程中,该方案克服了电池密封方面的技术挑战。通过神经网络对不同运行条件下录制的视频进行逐帧分析,实现了液态水的量化。为了进行对比分析,采用了阈值处理方法,并详细讨论了其优缺点。利用基于阈值处理结果生成的包含137帧的高质量训练集对神经网络进行训练。本研究探讨了温度、电压以及流场结构设计对水积累的影响。基于神经网络的语义分割方法在复杂工况下表现出优异的液态水识别能力、适应性和敏感性。研究发现,在蛇形流道中,方形弯头在初期比半圆形弯头更容易积聚水分,而在稳态阶段,不同流道结构之间的差异几乎不再影响水的分布。此外,电池性能与水覆盖比率之间不存在明显的线性关系。

English Abstract

Abstract Water and thermal management are pivotal to the performance of proton exchange membrane fuel cells. This paper presents the design of a transparent single fuel cell with an active area of 25 cm 2 for characterising water distribution under various operating conditions. In the design and assembly of batteries , the proposed design overcomes the challenges in battery sealing. Water was quantified using a neural network that analysed videos recorded under various operational conditions frame-by-frame. For comparative analysis, a threshold processing method was employed, and its advantages and disadvantages were discussed in detail. A high-quality training set comprising 137 frames derived from the threshold processing results was employed for the neural network training . This study investigated the impacts of temperature, voltage, and flow field design on water accumulation. The neural-network-based semantic segmentation method demonstrated superior recognition, adaptability, and sensitivity to liquid water under complex operating conditions. It was found that a square bender was more likely to accumulate water than a semicircular corner bender in the serpentine flow channel in the early stage, whereas the difference in the flow channel had almost no effect on the steady stage. Furthermore, there was no evident linear relationship between cell performance and water cover ratio.
S

SunView 深度解读

该神经网络图像处理技术对阳光电源储能系统热管理具有重要借鉴价值。ST系列PCS和PowerTitan储能系统运行中的温度监测与水汽管理是关键挑战,文中基于语义分割的实时监测方法可应用于电池簇热失控预警。透明化设计理念启发iSolarCloud平台开发视觉诊断模块,通过热成像与AI识别实现储能柜内异常检测。该方法的高适应性和敏感度特性,可优化充电桩液冷系统的冷凝水管理,提升设备可靠性与智能运维能力。