← 返回
点对点太阳能与储能交易:一种基于网络化多智能体强化学习的方法
Peer-to-peer energy trading of solar and energy storage: A networked multiagent reinforcement learning approach
| 作者 | Chen Feng · Andrew L.Liu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 383 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The consensus framework achieves the highest long-term system rewards. |
语言:
中文摘要
摘要 利用分布式可再生能源,特别是太阳能和储能系统,通过点对点(P2P)能源交易在本地配电网中运行,长期以来被视为提升能源系统韧性与可持续性的一种解决方案。然而,消费者和产消者(即拥有光伏系统和/或储能设备的用户)缺乏参与重复性P2P交易所需的专业知识,而可再生能源边际成本为零的特点也给公平市场价格的确定带来了挑战。为解决这些问题,本文提出多智能体强化学习(MARL)框架,以帮助自动化消费者对其光伏系统和储能资源的投标与管理行为,该框架基于一种采用供需比(supply–demand ratio)的特定P2P出清机制。此外,我们展示了MARL框架如何整合物理网络约束,从而确保P2P能源交易的物理可行性,并为实际部署提供可能的实施路径。
English Abstract
Abstract Utilizing distributed renewable energy resources , particularly solar and energy storage, in local distribution networks via peer-to-peer (P2P) energy trading has long been touted as a solution to improve energy systems’ resilience and sustainability . Consumers and prosumers (that is, those with solar PV and/or energy storage), however, do not have the expertise to engage in repeated P2P trading, and the zero-marginal costs of renewables present challenges in determining fair market prices. To address these issues, we propose multi-agent reinforcement learning (MARL) frameworks to help automate consumers’ bidding and management of their solar PV and energy storage resources, under a specific P2P clearing mechanism that utilizes the so-called supply–demand ratio. In addition, we show how the MARL frameworks can integrate physical network constraints, ensuring the physical feasibility of P2P energy trading and providing a possible pathway for practical deployment.
S
SunView 深度解读
该多智能体强化学习框架对阳光电源ST系列储能变流器和SG光伏逆变器的协同控制具有重要价值。可将MARL算法集成到iSolarCloud平台,实现分布式光储资产的自主竞价与能量管理优化。特别是供需比清算机制与物理网络约束的结合,为PowerTitan储能系统在虚拟电厂场景下的P2P交易提供可行路径,提升光储一体化解决方案的经济性与电网友好性,支撑GFM控制策略在分布式能源交易中的实际部署。