← 返回
风电变流技术 储能系统 ★ 5.0

预测不确定性建模技术及概率型风速与风电功率预测评估指标综述

A review of predictive uncertainty modeling techniques and evaluation metrics in probabilistic wind speed and wind power forecasting

作者 Yun Wanga · Fan Zhang · Hongbo Koua · Runmin Zoua · Qinghua Hub · Jianzhou Wangc · Dipti Srinivasan
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 396 卷
技术分类 风电变流技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 The roles of different types of uncertainty in predictive uncertainty are discussed.
语言:

中文摘要

摘要 鉴于风能资源具有显著的变异性,解决风能预测中固有的不确定性至关重要。因此,研究人员已开发出多种概率模型,这些模型为理解风能的波动特性提供了有价值的见解,并提升了预测的准确性。本文旨在分析预测不确定性中不同类型不确定性的意义,并对风速与风电功率预测的概率方法进行系统而全面的综述。特别地,本文详细考察了用于生成预测区间(作为预测不确定性的一种通用表示形式)的代表性模型结构。此外,本综述还探讨了用于评估概率预测质量的各类评价指标,并对其数学表达、时间复杂度以及适用条件进行了分析。这些评价指标在判断预测结果的可靠性与准确性方面发挥着关键作用。本文还指出了实现精确的概率型风速与风电功率预测所必须解决的五个关键挑战。为应对这些挑战,总结了提升概率预测性能的六个未来发展趋势。

English Abstract

Abstract Given the significant variability in wind resources , addressing the inherent uncertainty in wind energy forecasting is crucial. As a result, numerous probabilistic models have been developed, offering valuable insights into wind variability and improving forecast accuracy. This paper aims to analyze the significance of different types of uncertainty in predictive uncertainty and provides a comprehensive review of probabilistic methods for wind speed and wind power forecasting . Notably, a detailed examination of representative model structures employed for generating prediction intervals, which serve as a universal representation of predictive uncertainty, is also presented. Furthermore, this review examines the evaluators used to assess the quality of probabilistic forecasts and provides an analysis of their expression, time complexity, and usage conditions. These evaluators play a crucial role in determining the reliability and accuracy of the forecasted results. The paper also identifies five key challenges that need to be addressed to achieve accurate probabilistic wind speed and wind power forecasting. In an effort to tackle these challenges, six future trends in enhancing probabilistic forecasting performance are summarized.
S

SunView 深度解读

该风电预测不确定性建模技术对阳光电源储能系统具有重要应用价值。通过概率预测方法可优化ST系列PCS的充放电策略,提升PowerTitan储能系统在风储耦合场景下的能量管理精度。预测区间技术可为iSolarCloud平台提供更可靠的风电波动预判能力,辅助GFM/VSG控制策略实现更平滑的功率调节。不确定性量化方法还可增强储能系统预测性维护功能,降低风电接入对电网稳定性的冲击,提高新能源消纳率和系统经济效益。