← 返回
风电变流技术 储能系统 ★ 5.0

基于alpha通道融合的风力发电机组异常数据识别方法

Abnormal data recognition method for wind turbines based on alpha channel fusion

作者 Yan Chen · Guihua Banb · Tingxiao Dinga
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 396 卷
技术分类 风电变流技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A new image-processing-based WPC anomaly data identification method named AIS was proposed which requires only two parameters and demonstrates excellent universality.
语言:

中文摘要

尽管图像处理技术在风电功率曲线(WPC)异常检测领域发挥着先进作用,能够准确识别各类异常数据,但仍面临三大挑战:依赖人工标注的参考样本、通过栅格化和距离计算表示数据密度,以及对堆叠型异常数据识别精度不足。为解决上述问题,本研究提出一种简单且高效的WPC异常数据识别与清洗方法。该方法无需依赖人工标注的参考样本,仅通过调节两个参数的取值即可实现不同类型WPC异常数据的识别。所提方法首先采用alpha通道融合机制,在连续空间中直接表征数据密度,从而避免了栅格化处理;其次,引入边界离散化、序列平滑技术及边界补全策略,用于精确提取正常数据与异常数据的边界;最后,结合Canny边缘检测算法与图像形态学原理,实现了对所有WPC异常数据的精准识别与清洗。本研究以2022年百度KDD杯竞赛提供的134组WPC数据集作为实验数据,选取六组具有代表性的数据集,通过与七种模型进行实验对比,验证了所提方法的有效性。此外,通过对134组数据集计算弃风率,对该区域的弃风情况进行了初步分析。本研究的数据与代码均已公开。

English Abstract

Abstract Although image processing technology plays an advanced role in the field of abnormal detection of Wind Power Curves (WPC), enabling accurate identification of various types of abnormal data, it still faces three major challenges: reliance on manually labeled reference samples, representation of data density through rasterization and distance calculations, and insufficient accuracy in identifying stacked abnormal data. To address these problems, this study proposes a simple and efficient method for identifying and cleaning WPC abnormal data. This method does not rely on manually labeled reference samples and achieves the identification of different types of WPC abnormal data by merely adjusting the values of two parameters. The proposed method first employs an alpha channel fusion mechanism to directly represent data density in continuous space, eliminating the need for rasterization. Secondly, it introduces boundary discretization , sequence smoothing techniques, and a boundary completion strategy, which are used to accurately extract the boundaries of normal and abnormal data. Finally, by integrating the Canny edge detection algorithm and image morphology principles, the method achieves precise identification and cleaning of all WPC abnormal data. The 134 WPC datasets from the 2022 Baidu KDD Cup Competition were used as experimental data in this study. The effectiveness of the proposed method was validated through experimental comparisons with seven models on six representative datasets. Additionally, a simple analysis of wind curtailment in the region was conducted by calculating the wind curtailment rates across the 134 datasets. The data and code of this study are available.
S

SunView 深度解读

该风电异常数据识别技术对阳光电源储能系统和智能运维平台具有重要借鉴价值。其alpha通道融合机制可应用于iSolarCloud平台的功率曲线异常检测,提升ST系列储能变流器和SG系列光伏逆变器的数据清洗能力。无需人工标注样本的特点契合大规模新能源场站运维需求,边界离散化与Canny边缘检测算法可增强预测性维护精度。该方法对识别叠加异常数据的优势,可优化储能系统SOC估算和光伏MPPT追踪算法,降低因脏数据导致的控制偏差,提升PowerTitan等产品的智能化水平和发电效率。